Registration and change detection techniques using 3D laser radar data from natural environments

Author(s):  
Gustav Tolt ◽  
Anders Wiklund ◽  
Pierre Andersson ◽  
Tomas Chevalier ◽  
Christina Grönwall ◽  
...  
Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 55
Author(s):  
Odile Close ◽  
Sophie Petit ◽  
Benjamin Beaumont ◽  
Eric Hallot

Land Use/Cover changes are crucial for the use of sustainable resources and the delivery of ecosystem services. They play an important contribution in the climate change mitigation due to their ability to emit and remove greenhouse gas from the atmosphere. These emissions/removals are subject to an inventory which must be reported annually under the United Nations Framework Convention on Climate Change. This study investigates the use of Sentinel-2 data for analysing lands conversion associated to Land Use, Land Use Change and Forestry sector in the Wallonia region (southern Belgium). This region is characterized by one of the lowest conversion rates across European countries, which constitutes a particular challenge in identifying land changes. The proposed research tests the most commonly used change detection techniques on a bi-temporal and multi-temporal set of mosaics of Sentinel-2 data from the years 2016 and 2018. Our results reveal that land conversion is a very rare phenomenon in Wallonia. All the change detection techniques tested have been found to substantially overestimate the changes. In spite of this moderate results our study has demonstrated the potential of Sentinel-2 regarding land conversion. However, in this specific context of very low magnitude of land conversion in Wallonia, change detection techniques appear to be not sufficient to exceed the signal to noise ratio.


2018 ◽  
Vol 58 (4) ◽  
pp. 537-551 ◽  
Author(s):  
I. A. Bychkova ◽  
V. G. Smirnov

Te methods of satellite monitoring of dangerous ice formations, namely icebergs in the Arctic seas, representing a threat to the safety of navigation and economic activity on the Arctic shelf are considered. Te main objective of the research is to develop methods for detecting icebergs using satellite radar data and high space resolution images in the visible spectral range. Te developed method of iceberg detection is based on statistical criteria for fnding gradient zones in the analysis of two-dimensional felds of satellite images. Te algorithms of the iceberg detection, the procedure of the false target identifcation, and determination the horizontal dimensions of the icebergs and their location are described. Examples of iceberg detection using satellite information with high space resolution obtained from Sentinel-1 and Landsat-8 satellites are given. To assess the iceberg threat, we propose to use a model of their drif, one of the input parameters of which is the size of the detected objects. Tree possible situations of observation of icebergs are identifed, namely, the «status» state of objects: icebergs on open water; icebergs in drifing ice; and icebergs in the fast ice. At the same time, in each of these situations, the iceberg can be grounded, that prevents its moving. Specifc features of the iceberg monitoring at various «status» states of them are considered. Te «status» state of the iceberg is also taken into account when assessing the degree of danger of the detected object. Te use of iceberg detection techniques based on satellite radar data and visible range images is illustrated by results of monitoring the coastal areas of the Severnaya Zemlya archipelago. Te approaches proposed to detect icebergs from satellite data allow improving the quality and efciency of service for a wide number of users with ensuring the efciency and safety of Arctic navigation and activities on the Arctic shelf.


Author(s):  
H. Xilouris Koumaras

This chapter will outline the various existing methods of boundary shot and scene change detection.


Sign in / Sign up

Export Citation Format

Share Document