Repeatability and noise robustness of spicularity features for computer aided characterization of pulmonary nodules in CT

Author(s):  
Rafael Wiemker ◽  
Roland Opfer ◽  
Thomas Bülow ◽  
Sven Kabus ◽  
Ekta Dharaiya
2016 ◽  
Vol 8 (8) ◽  
pp. 729 ◽  
Author(s):  
Simone Perandini ◽  
Gian Alberto Soardi ◽  
Massimiliano Motton ◽  
Raffaele Augelli ◽  
Chiara Dallaserra ◽  
...  

2007 ◽  
Author(s):  
Yang Wang ◽  
Michael F. McNitt-Gray ◽  
Sumit Shah ◽  
Jonathan G. Goldin ◽  
Matthew S. Brown ◽  
...  

Author(s):  
Yongfeng Gao ◽  
Jiaxing Tan ◽  
Zhengrong Liang ◽  
Lihong Li ◽  
Yumei Huo

AbstractComputer aided detection (CADe) of pulmonary nodules plays an important role in assisting radiologists’ diagnosis and alleviating interpretation burden for lung cancer. Current CADe systems, aiming at simulating radiologists’ examination procedure, are built upon computer tomography (CT) images with feature extraction for detection and diagnosis. Human visual perception in CT image is reconstructed from sinogram, which is the original raw data acquired from CT scanner. In this work, different from the conventional image based CADe system, we propose a novel sinogram based CADe system in which the full projection information is used to explore additional effective features of nodules in the sinogram domain. Facing the challenges of limited research in this concept and unknown effective features in the sinogram domain, we design a new CADe system that utilizes the self-learning power of the convolutional neural network to learn and extract effective features from sinogram. The proposed system was validated on 208 patient cases from the publicly available online Lung Image Database Consortium database, with each case having at least one juxtapleural nodule annotation. Experimental results demonstrated that our proposed method obtained a value of 0.91 of the area under the curve (AUC) of receiver operating characteristic based on sinogram alone, comparing to 0.89 based on CT image alone. Moreover, a combination of sinogram and CT image could further improve the value of AUC to 0.92. This study indicates that pulmonary nodule detection in the sinogram domain is feasible with deep learning.


2021 ◽  
Vol 14 ◽  
pp. 263177452199305
Author(s):  
Hemant Goyal ◽  
Rupinder Mann ◽  
Zainab Gandhi ◽  
Abhilash Perisetti ◽  
Zhongheng Zhang ◽  
...  

The role of artificial intelligence and its applications has been increasing at a rapid pace in the field of gastroenterology. The application of artificial intelligence in gastroenterology ranges from colon cancer screening and characterization of dysplastic and neoplastic polyps to the endoscopic ultrasonographic evaluation of pancreatic diseases. Artificial intelligence has been found to be useful in the evaluation and enhancement of the quality measure for endoscopic retrograde cholangiopancreatography. Similarly, artificial intelligence techniques like artificial neural networks and faster region-based convolution network are showing promising results in early and accurate diagnosis of pancreatic cancer and its differentiation from chronic pancreatitis. Other artificial intelligence techniques like radiomics-based computer-aided diagnosis systems could help to differentiate between various types of cystic pancreatic lesions. Artificial intelligence and computer-aided systems also showing promising results in the diagnosis of cholangiocarcinoma and the prediction of choledocholithiasis. In this review, we discuss the role of artificial intelligence in establishing diagnosis, prognosis, predicting response to treatment, and guiding therapeutics in the pancreaticobiliary system.


2010 ◽  
Vol 50 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Michael C. Lee ◽  
Lilla Boroczky ◽  
Kivilcim Sungur-Stasik ◽  
Aaron D. Cann ◽  
Alain C. Borczuk ◽  
...  

2013 ◽  
Vol 43 (6) ◽  
pp. 798-805 ◽  
Author(s):  
Chia-Hsuan Shen ◽  
Fred K. Choy ◽  
Yuerong Chen ◽  
Shengyong Wang

Sign in / Sign up

Export Citation Format

Share Document