scholarly journals Application of artificial intelligence in pancreaticobiliary diseases

2021 ◽  
Vol 14 ◽  
pp. 263177452199305
Author(s):  
Hemant Goyal ◽  
Rupinder Mann ◽  
Zainab Gandhi ◽  
Abhilash Perisetti ◽  
Zhongheng Zhang ◽  
...  

The role of artificial intelligence and its applications has been increasing at a rapid pace in the field of gastroenterology. The application of artificial intelligence in gastroenterology ranges from colon cancer screening and characterization of dysplastic and neoplastic polyps to the endoscopic ultrasonographic evaluation of pancreatic diseases. Artificial intelligence has been found to be useful in the evaluation and enhancement of the quality measure for endoscopic retrograde cholangiopancreatography. Similarly, artificial intelligence techniques like artificial neural networks and faster region-based convolution network are showing promising results in early and accurate diagnosis of pancreatic cancer and its differentiation from chronic pancreatitis. Other artificial intelligence techniques like radiomics-based computer-aided diagnosis systems could help to differentiate between various types of cystic pancreatic lesions. Artificial intelligence and computer-aided systems also showing promising results in the diagnosis of cholangiocarcinoma and the prediction of choledocholithiasis. In this review, we discuss the role of artificial intelligence in establishing diagnosis, prognosis, predicting response to treatment, and guiding therapeutics in the pancreaticobiliary system.

Author(s):  
Abir Belaala ◽  
Labib Sadek Terrissa ◽  
Noureddine Zerhouni ◽  
Christine Devalland

Spitzoid lesions may be largely categorized into Spitz Nevus, Atypical Spitz Tumors, and Spitz Melanomas. Classifying a lesion precisely as Atypical Spitz Tumors or AST is challenging and often requires the integration of clinical, histological, and immunohistochemical features to differentiate AST from regular Spitz Nevus and malignant Spitz Melanomas. Specifically, this paper aims to test several artificial intelligence techniques so as to build a computer-aided diagnosis system. A proposed three-phase approach is being implemented. In Phase 1, collected data are preprocessed with an effective SMOTE-based method being implemented to treat the imbalance data problem. Then, a feature selection mechanism using genetic algorithm (GA) is applied in Phase 2. Finally, in Phase 3, a 10-fold cross-validation method is used to compare the performance of seven machine-learning algorithms for classification. Results obtained with SMOTE-Multilayer Perceptron with GA-based 14 features show the highest classification accuracy, specificity (0.98), and a sensitivity of 0.99.


Author(s):  
Paulo Eduardo Ambrósio

Professionals of the medical radiology area depend directly on the process of decision making in their daily activities. This process is mainly based on the analysis of a great amount of information obtained for the evaluation of radiographic images. Some studies demonstrate the great capacity of Artificial Neural Networks (ANN) in support systems for diagnosis, mainly in applications as pattern classification. The objective of this article is to present the development of an ANN-based system, verifying its behavior as a feature extraction and dimensionality reduction tool, for recognition and characterization of patterns, for posterior classification in normal and abnormal patterns.


Medicine ◽  
2019 ◽  
Vol 98 (3) ◽  
pp. e14146 ◽  
Author(s):  
Hee Jeong Park ◽  
Sun Mi Kim ◽  
Bo La Yun ◽  
Mijung Jang ◽  
Bohyoung Kim ◽  
...  

2019 ◽  
Vol 4 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Omer F Ahmad ◽  
Antonio S Soares ◽  
Evangelos Mazomenos ◽  
Patrick Brandao ◽  
Roser Vega ◽  
...  

Iproceedings ◽  
10.2196/35433 ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. e35433
Author(s):  
Fernando Alarcón-Soldevilla ◽  
Francisco José Hernández-Gómez ◽  
Juan Antonio García-Carmona ◽  
Celia Campoy Carreño ◽  
Ramon Grimalt ◽  
...  

Background Artificial intelligence (AI) has emerged in dermatology with some studies focusing on skin disorders such as skin cancer, atopic dermatitis, psoriasis, and onychomycosis. Alopecia areata (AA) is a dermatological disease whose prevalence is 0.7%-3% in the United States, and is characterized by oval areas of nonscarring hair loss of the scalp or body without evident clinical variables to predict its response to the treatment. Nonetheless, some studies suggest a predictive value of trichoscopic features in the evaluation of treatment responses. Assuming that black dots, broken hairs, exclamation marks, and tapered hairs are markers of negative predictive value of the treatment response, while yellow dots are markers of no response to treatment according to recent studies, the absence of these trichoscopic features could indicate favorable disease evolution without treatment or even predict its response. Nonetheless, no studies have reportedly evaluated the role of AI in AA on the basis of trichoscopic features. Objective This study aimed to develop an AI algorithm to predict, using trichoscopic images, those patients diagnosed with AA with a better disease evolution. Methods In total, 80 trichoscopic images were included and classified in those with or without features of negative prognosis. Using a data augmentation technique, they were multiplied to 179 images to train an AI algorithm, as previously carried out with dermoscopic images of skin tumors with a favorable response. Subsequently, 82 new images of AA were presented to the algorithm, and the algorithm classified these patients as responders and non-responders; this process was reviewed by an expert trichologist observer and presented a concordance higher than 90% with the algorithm identifying structures described previously. Evolution of the cases was followed up to truly determine their response to treatment and, therefore, to assess the predictive value of the algorithm. Results In total, 32 of 40 (80%) images of patients predicted as nonresponders scarcely showed response to the treatment, while 34 of 42 (81%) images of those predicted as responders showed a favorable response to the treatment. Conclusions The development of an AI algorithm or tool could be useful to predict AA evolution and its response to treatment. However, further research is needed, including larger sample images or trained algorithms, by using images previously classified in accordance with the disease evolution and not with trichoscopic features. Conflicts of Interest None declared.


Sign in / Sign up

Export Citation Format

Share Document