Bistable electroactive polymers (BSEP): large-strain actuation of rigid polymers

Author(s):  
Zhibin Yu ◽  
Xiaofan Niu ◽  
Paul Brochu ◽  
Wei Yuan ◽  
Huafeng Li ◽  
...  
Author(s):  
William E. Spath ◽  
Wayne W. Walter

Current prostheses are not able to meet the needs of patients. The authors have recently been investigating the feasibility of integrating multiple types of electroactive polymers (EAP) to develop an artificial muscle for prostheses and muscle implants; much like biological muscle is made up of multiple types of muscle fibers. The intent is to produce a lightweight device which has smooth fluid-like motion, in contrast to the jerky motion of current prostheses which use heavy rotary actuators. A human arm model, isolating the bicep muscle, was developed to better understand the requirements on force and strain that an artificial muscle must meet to replace biological muscle. This study was conducted with the assistance of orthopedic surgeons from the Rochester General Hospital. Bicep muscle characteristics were compared with those of dielectric elastomer electroactive polymers (DEAP), since they produce relatively high force and large strain during actuation. Results show that current characteristics of DEAPs will not allow for direct substitution of human muscle fibers with EAPs because their force and strain outputs are too low. To increase the force and strain output of DEAPs to that of human muscle fibers, the stiffness of the DEAP needs to be increased. The analysis done and results obtained are discussed in the paper, as well as possible ways to increase the stiffness of EAPs to better meet the requirements for biological muscle replacement.


2009 ◽  
Vol 95 (19) ◽  
pp. 192904 ◽  
Author(s):  
Zhibin Yu ◽  
Wei Yuan ◽  
Paul Brochu ◽  
Bin Chen ◽  
Zhitian Liu ◽  
...  

MRS Bulletin ◽  
2008 ◽  
Vol 33 (3) ◽  
pp. 183-187 ◽  
Author(s):  
Zhongyang Cheng ◽  
Qiming Zhang

AbstractField-activated electroactive polymers (FEAPs) are a class of electroactive polymers that are insulating and exhibit coulombic interaction with and dipole formation in response to external electric signals. There are many polarization mechanisms in insulating polymers, from the molecular to the mesoscopic and even the macroscopic level, which couple strongly with mechanical deformation and can be used to create polymer actuators and sensors. FEAPs feature fast response speed limited by the polymer dielectric and elastic relaxation time, a very large strain level (to more than 100% strain), high electromechanical efficiency, the ability to operate down to micro/nanoelectromechanical devices, and a highly reproducible strain response under electric fields. One challenge in FEAP actuators and electromechanical devices is reducing the operation voltage to below 100 V or even 10 V while achieving an electromechanical conversion efficiency comparable with that of inorganic electroactive materials.


2008 ◽  
Vol 12 (3) ◽  
pp. 203-228 ◽  
Author(s):  
Said Taïbi ◽  
Jean-Marie Fleureau ◽  
Sigit Hadiwardoyo ◽  
Siba Kheirbek-Saoud

1990 ◽  
Vol 57 (2) ◽  
pp. 298-306 ◽  
Author(s):  
K. W. Neale ◽  
S. C. Shrivastava

The inelastic behavior of solid circular bars twisted to arbitrarily large strains is considered. Various phenomenological constitutive laws currently employed to model finite strain inelastic behavior are shown to lead to closed-form analytical solutions for torsion. These include rate-independent elastic-plastic isotropic hardening J2 flow theory of plasticity, various kinematic hardening models of flow theory, and both hypoelastic and hyperelastic formulations of J2 deformation theory. Certain rate-dependent inelastic laws, including creep and strain-rate sensitivity models, also permit the development of closed-form solutions. The derivation of these solutions is presented as well as numerous applications to a wide variety of time-independent and rate-dependent plastic constitutive laws.


2015 ◽  
Vol 1114 ◽  
pp. 143-148
Author(s):  
Nicolae Serban ◽  
Doina Răducanu ◽  
Vasile Danut Cojocaru ◽  
Nicolae Ghiban

Severe plastic deformation (SPD) has received enormous interest over the last two decades as a method capable of producing fully dense and bulk ultra-fine grained (UFG) and nanocrystalline (NC) materials. Significant grain refinement obtained by SPD leads to improvement of mechanical, microstructural and physical properties. Compared to classical deformation processes, the big advantage of SPD manufacturing techniques, represented in particular by equal channel angular pressing (ECAP) is the lack of shape-change deformation and the consequent possibility to impart extremely large strain. In ECAP processing, the workpiece is pressed through a die in which two channels of equal cross-section intersect at an angle of ϕ and an additional angle of ψ define the arc of curvature at the outer point of intersection of the two channels. As a result of pressing, the sample theoretically deforms by simple shear and retains the same cross-sectional area to allow repeated pressings for several cycles. A commercial AlMgSi alloy was investigated in our study. The specimens were processed at room temperature for multiple passes, using three different ECAP dies. All samples (ECAP processed and as-received) were subjected to metallographic analysis and mechanical testing. Several correlations between the main processing parameters and the resulting microstructural aspect and mechanical features for the processed material were established. It was shown that severe plastic deformation by means of ECAP processing can be used in aluminum alloys microstructural design as an advanced tool for grain refinement in order to attain the desired microstructure and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document