boron steel
Recently Published Documents


TOTAL DOCUMENTS

415
(FIVE YEARS 86)

H-INDEX

27
(FIVE YEARS 5)

Author(s):  
Mohd Fairuz Rashid ◽  
◽  
Hadzley Abu Bakar ◽  
Abdul Aziz Adam ◽  
Mohd Basri Ali ◽  
...  

22MnB5 Boron Steel can be considered as emerged material for high strength and low weight application. This material potentially used in abrasive condition such as cutting tool or brake pad where high friction resistance applies. In this study, the wear characteristics of 22MnB5 was investigated under the frictional tests via micro pin-on-disk. 22MnB5 Boron Steel was prepared the form of round shape within the size of 2.6 mm thickness and 12 mm diameter by using laser cutting. 4 different samples were tested namely blank (sample A), self-hardening heat treatment (sample B), 60 HRC hot stamped (sample C) and 70 HRC hot stamped (sample D). The results show that Coefficient of Friction (COF) increased as the hardness of 22MnB5 decreased. Low COF of 0.2114 recorded for sample D with 70 HRC hardness. The COF increased to 0.24, 0.29 and 0.3 when sample C (60 HRC), sample B (52 HRC) and sample A (45.5 HRC) applied respectively. For pin-on disc test, worn area decreased as the hardness increased. 22MnB5 that prepared with the highest hardness of 70 HRC presented smallest wear area of 700 µm x 2400 µm. It is followed by 800 µm x 2400 µm, 1000 µm x 2400 µm, 1600 µm x 2800 µm, when sample C, B and A were scratched. Observation on the worn surface revealed delamination of 22MnB5 surface in the form of fragmented flaking debris.


2021 ◽  
Vol 59 (12) ◽  
pp. 893-903
Author(s):  
Jae-Hun Kim ◽  
Hyun-Uk Jun ◽  
Joo-Yong Cheon ◽  
Jae-won Kim ◽  
Jae-deuk Kim ◽  
...  

This study evaluated the effect of preheating on early stage melting behavior of a Al-Si coated hot stamped boron steel bolt during projection welding. A large amount of heat was generated in the early stage of projection welding. Because of the large heat generation, a rapid collapse of the projection occurred and a molten coating layer remained on the interface of the welded part. This caused welding defects such as expulsion and porosity. However, preheating helped remove the molten Al-Si coating layer by pushing it out toward the outer edge of the molten pool. This suggests that preheating can effectively minimize or remove the molten coating layer within the weld. Preheating also prevented the rapid collapse of the projection by partially melting the projection, and thus improving the contact area. These phenomena can prevent the concentration of current density at the weld interface and hence decrease heat generation. Finally, the preheating current improved nugget quality by promoting the stable growth of the melted metal and by preventing expulsion and porosity.


Author(s):  
Emre Teker ◽  
Mohd Danish ◽  
Munish Kumar Gupta ◽  
Mustafa Kuntoğlu ◽  
Mehmet Erdi Korkmaz

AbstractIn this paper, the constitutive equation parameters (Johnson–Cook parameters) of the 33MnCrB5 material were determined with the help of tensile tests. Initially, Johnson–Cook (JC) model was used for performing the simulations of the sample with finite element analysis with the help of ANSYS software. For these operations, the sample was first used at a certain temperature (24 °C) and low strain rates (10−1, 10−2, 10−3 s−1) and quasi-static tensile tests were performed. Then, high temperature tensile tests were performed with strain rate values of 10−3 s−1 at temperatures of 300 °C, 600 °C, and 900 °C, respectively. Finally, JC parameters belonging to test materials were found in accordance with the results obtained from the high temperature tensile and quasi-static tests. In the last stage, the results obtained from the simulation software for the yield stress, maximum stress, and elongation values were compared with the experimental results. As a result, deviation values for quasi-static tests are calculated as 5.04% at yield stress, 5.57% at maximum stress, and 5.68% at elongation, while for high temperature, yield stress is 9.42%, maximum stress is 11.49% and the elongation value is 7.63%. The accuracy of JC parameters was verified with the comparison made with the obtained data.


2021 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Giuseppe Dell’Avvocato ◽  
Davide Palumbo ◽  
Maria Emanuela Palmieri ◽  
Umberto Galietti

The applicability of active thermography as a non-destructive method to distinguish heat treated from not-treated boron steel has been investigated. While the usual hardness semi-destructive tests influence the inspected surface, laser thermography is capable of verifying the effectiveness of heat treatment in boron steel in a non-destructive way without any surface modification. The procedure has been verified on two plates of boron steels with different structures (100% ferritic–pearlitic and 100% martensitic).


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7043
Author(s):  
Long Chen ◽  
Wei Chen ◽  
Miao Cao ◽  
Xin Li

The coatings of boron steels play an important role in affecting the quality of hot stamping parts, so it is important to evaluate the hot stamping performance of coatings before designing processes. Taking the U-type hot stamping part of boron steel as research objects, the surface quality, microstructure and temperature variation of samples with GA (galvannealed), GI (galvanized) and Al–Si coatings were observed and analyzed to evaluate the anti-oxidation, forming and quenching performances of different coatings. The results show that all the GA, GI and Al–Si coatings could provide good oxidation protection and also act as the lubricants for avoiding the friction damage of sample substrates and die-surface. But the different compositions of GA, GI and Al–Si coatings will contribute the different colors. Under the same deformation degree, the Al–Si coating can provide the best substrate protection and the GI coating will induce cracks in the substrate because of the liquid metal-induced embrittlement phenomenon. There is no significant difference between the quenching performances of GA, GI and Al–Si coatings, and the thermal conductivity of the GI coating is slightly better than Al–Si and GA coatings.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6730
Author(s):  
Hye-Jin Kim ◽  
Hyun-Yeong Jung ◽  
Seung-Pill Jung ◽  
Ji-Hee Son ◽  
Joo-Sik Hyun ◽  
...  

Our study mainly focused on diffusible hydrogen in aluminum–silicon-coated hot-stamped boron steel during a hot press forming process and in pre-treatment sequential lines of the automotive manufacturing process using a thermal desorption spectroscopy (TDS) technique. First, in the hot stamping procedure, as the soaking time increased in the heating furnace at a specific dew point when austenitizing, a high concentration of diffusible hydrogen was absorbed into the hot-stamped boron steel. Based on the TDS analysis of hydrogen absorbed from hot stamping, the activation energy value of hydrogen trapping in 1.8 GPa grade steel is lower than that of 1.5 GPa grade steel. This means that diffusible hydrogen can be more easily diffused into defective sites of the microstructure at a higher level of the tensile strength grade. Second, in sequential pre-treatment lines of the automotive manufacturing process, additional hydrogen did not flow into the surface, and an electro-deposition process, including a baking procedure, was effective in removing diffusible hydrogen, which was similar to the residual hydrogen of the as-received state (i.e., initial cold rolled blank). Based on these results, the hydrogen absorption was facilitated during hot press forming, but the hydrogen was sequentially desorbed during automotive sequential lines on aluminum-coated hot-stamped steel parts.


Author(s):  
Bernd-Arno Behrens ◽  
Daniel Rosenbusch ◽  
Hendrik Wester ◽  
Eugen Stockburger

AbstractThe process of press hardening is gaining importance in view of the increasing demand for weight reduction combined with higher crash safety in cars. An alternative to the established manganese-boron steel 22MnB5 is hot-formed martensitic chromium steels such as AISI 420C. Strengths of 1850 MPa and elongations of 12% are possible, exceeding those of 22MnB5. In industrial manufacturing, FE-simulation is commonly used in order to design car body parts cost-efficiently. Therefore, the characterization and the modeling of AISI 420C regarding flow stress, phase transformations as well as failure behavior are presented in this paper. Temperature-depended flow curves are determined, showing the low flow stress and hardening behavior at temperatures around 1000 °C. Cooling experiments are carried out, and a continuous cooling diagram is generated. Observed phases are martensite and retained austenite for industrial relevant cooling rates above 10 K/s. In addition, tests to investigate temperature-dependent forming limit curves are performed. As expected, the highest forming limit is reached at 1050 °C and decreases with falling temperature. Finally, a simulation model of a press-hardening process chain is set up based on the material behavior characterized earlier and compared to experimental values. The forming force, phase transformation and forming limit could be calculated with good agreement to the experiment.


Sign in / Sign up

Export Citation Format

Share Document