Improved design of linear electromagnetic transducers for large-scale vibration energy harvesting

Author(s):  
Xiudong Tang ◽  
Lei Zuo ◽  
Teng Lin ◽  
Peisheng Zhang
2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pejman Eghbali ◽  
Davood Younesian ◽  
Armin Moayedizadeh ◽  
Mostafa Ranjbar

Abstract Piezoelectric (PZT) components are one of the most popular elements in vibration sensing and also energy harvesting. They are very well established, cost effective and available in different geometries however there are still several challenges in their application particularly in vibration energy harvesting. They are normally narrow-band elements and work in high-frequency range. Their efficiency and power extraction density are also generally low compared with different electromagnetic techniques. Auxetic structures are proposed here to enhance efficiency of the piezoelectric circular patches in vibration energy harvesting. These kinds of patches namely PZT buzzers are inexpensive (less than 10 USD) elements and easily available. Two novel circular auxetic substrates are proposed to improve power extraction capacity of the conventional piezoelectric buzzers. Negative Poison’s ratio of the proposed meta-structure helps in efficiency enhancement. The concept is introduced, analyzed and verified through the finite element modeling and experimental testing. The idea is proved to work by comparing the harvested electrical power in the auxetic design against the conventional plain system. A parametric study is then carried out and effects of important electrical and geometrical parameters as well as the material property on the power extraction efficiency are assessed to arrive at optimum parameters. It is shown that by employing the auxetic design, a remarkable improvement in the harvested power is achievable. It is shown that for the two proposed auxetic designs, at the resonance frequency, we could reach to 10.2 and 13.3 magnification factor with respect to the plain energy harvester. Another important feature is that the resonant frequency in these new designs is very much lower than the conventional resonators. Results of this study can open a new path to application of inexpensive PZT buzzers in large-scale vibration energy harvesting.


Author(s):  
Alok Ranjan Biswal ◽  
Tarapada Roy ◽  
Rabindra Kumar Behera

The current article deals with finite element (FE)- and genetic algorithm (GA)-based vibration energy harvesting from a tapered piezolaminated cantilever beam. Euler–Bernoulli beam theory is used for modeling the various cross sections of the beam. The governing equation of motion is derived by using the Hamilton's principle. Two noded beam elements with two degrees of freedom at each node have been considered in order to solve the governing equation. The effect of structural damping has also been incorporated in the FE model. An electric interface is assumed to be connected to measure the voltage and output power in piezoelectric patch due to charge accumulation caused by vibration. The effects of taper (both in the width and height directions) on output power for three cases of shape variation (such as linear, parabolic and cubic) along with frequency and voltage are analyzed. A real-coded genetic algorithm-based constrained (such as ultimate stress and breakdown voltage) optimization technique has been formulated to determine the best possible design variables for optimal harvesting power. A comparative study is also carried out for output power by varying the cross section of the beam, and genetic algorithm-based optimization scheme shows the better results than that of available conventional trial and error methods.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3926
Author(s):  
Joanna Iwaniec ◽  
Grzegorz Litak ◽  
Marek Iwaniec ◽  
Jerzy Margielewicz ◽  
Damian Gąska ◽  
...  

In this paper, the frequency broadband effect in vibration energy harvesting was studied numerically using a quasi-zero stiffness resonator with two potential wells and piezoelectric transducers. Corresponding solutions were investigated for system excitation harmonics at various frequencies. Solutions for the higher voltage output were collected in specific branches of the power output diagram. Both the resonant solution synchronized with excitation and the frequency responses of the subharmonic spectra were found. The selected cases were illustrated and classified using a phase portrait, a Poincaré section, and recurrence plot (RP) approaches. Select recurrence quantification analysis (RQA) measures were used to characterize the discussed solutions.


Sign in / Sign up

Export Citation Format

Share Document