High Speed Photography For Studying The Shock Wave Propagation At High Mach Numbers Through A Reflection Nozzle

1979 ◽  
Author(s):  
S. G. Zaytsev ◽  
E. V. Lazareva ◽  
A. V. Mikhailova ◽  
V. L. Nikolaev-Kozlov ◽  
E. I. Chebotareva
2008 ◽  
Vol 51 (1) ◽  
pp. 122-145 ◽  
Author(s):  
Christelle Collet ◽  
Philippe Chabin ◽  
Henri Grzeskowiak

In recent years, the phenomena occurring during shock wave propagation in spatial structures have been studied to characterize more accurately and to minimize the effects of pyrotechnical sources. As part of a program managed by the Centre National d'Etudes Spatiales (CNES, the French space agency), SNPE Matériaux Energétiques (SME) and MBDA France collaborated in a study to understand the mechanisms of shock wave propagation induced by the detonation of a linear pyrotechnical source. The focus of the study was on structures representative of space launcher structures such as those used for the Ariane 5 launcher. Various experiments were performed with metallic and composite plates, and two types of measurement devices (strain gauges and accelerometers) were investigated. Additional out-of-plane velocity and displacement measurements were provided by laser vibrometers, and displays of the separation of the plates were provided by a high-speed camera (up to 4800 feet/second). Signals treatment provided bending and compression strain describing plate mechanical responses. The apparatus used and the associated concerns that arose during the firings also are discussed.


2010 ◽  
Vol 33 ◽  
pp. 114-118 ◽  
Author(s):  
Zhi Ming Qu

During shock wave propagation in the pipeline, the flow field of speed, pressure and temperature is evenly distributed. If there are obstacles, then the flow will be changed while the velocity gradient is formed near the obstacles. Passing through the obstacles, a high-speed gradient of the unburned methane mixture flow is established. While reaching the obstacle, the shock wave surface is rapidly stretched to increase the significant transmission speed. Propagating in the gradient field, the shock wave will be stretched and folded. The deformation of shock wave causes consumption of fuel and oxygen in greater unburned methane surface, which results in heat release rate increasing and faster shock propagation. In conclusion, shock wave causes larger advection speed in front of the unburned methane mixture, increasing flow velocity gradient further and leading to more intense shock wave propagation.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Gang Zhang

The shock wave propagation of the explosion in a pipe with holes was studied by a high-speed schlieren experimental system. In the experiments, schlieren images in the explosion were recorded by a high-speed camera from parallel and perpendicular orientations, respectively, and the pressure in the air was measured by an overpressure test system. In parallel orientation, it is observed that the steel pipe blocks the propagation of blast gases, but it allows the propagation of shock waves with a symmetrical shape. In perpendicular orientation, oblique shock wave fronts were observed, indicating the propagation of explosion detonation along the charge. Shock wave velocity in the hole direction is larger than that in the nonhole direction, indicating the function of holes in controlling blast energy, that is, leading blast energy to hole direction. Furthermore, the function of holes is verified by overpressure measurements in which peak overpressure in the hole direction is 0.87 KPa, 2.8 times larger than that in the nonhole direction. Finally, the variation of pressure around the explosion in a pipe with holes was analyzed by numerical simulation, qualitatively agreeing with high-speed schlieren experiments.


1992 ◽  
Vol 10 (1) ◽  
pp. 201-211 ◽  
Author(s):  
L. J. Dhareshwar ◽  
P. A. Naik ◽  
T. C. Kaushik ◽  
H. C. Pant

An experimental study of laser-driven shock wave propagation in a transparent material such as Plexiglas using a high-speed optical shadowgraphy technique is presented in this paper. A Nd:glass laser was used to produce laser intensity in the range 1012-1014 W/cm2 on the target. Optical shadowgrams of the propagating shock front were recorded with a second-harmonic (0.53-μm) optical probe beam. Shock pressures were measured at various laser intensities, and the scaling was found to agree with the theoretically predicted value. Shock pressure values have also been obtained from a one-dimensional Lagrangian hydrodynamic simulation, and they match well with experimental results. Shadowgrams of shock fronts produced by nonuniform spatial laser beam irradiation profiles have shown complete smoothing when targets with a thin coating of a material of high atomic number such as gold were used. Shock pressures in such coated targets are also found to be considerably higher compared with those in uncoated targets.


Author(s):  
Michael J. Hargather ◽  
Joshua L. Smith ◽  
James Anderson ◽  
Kyle Winter

Optical diagnostics including schlieren, shadowgraphy, and background-oriented schlieren (BOS) are used to visualize shock waves and compressible flow phenomena present in energetic and explosive events. These techniques visualize refractive index variations to obtain a range of qualitative and quantitative information. A one-dimensional explosively-driven shock tube facility is used with schlieren imaging to measure shock wave propagation speeds from explosive-thermite mixtures. The schlieren imaging visualizes turbulent flow structures in the expanding product gas region. An imaging spectrometer is paired with the schlieren imaging to quantify the mixing of the explosive product gases with the ambient environment. Shadowgraphy is applied to image field-scale explosive tests. The shadowgraph images reveal shock waves, fragment motion and speed, and the motion of product gases. BOS is a modern technique for visualizing refractive fields via their distortion of a background pattern. Here the technique is applied to image field-scale explosive events using the ambient background of the test pad. The BOS images clearly show shock wave propagation and reflection from surfaces, which is not clearly visible in the raw high-speed digital images.


AIAA Journal ◽  
1998 ◽  
Vol 36 ◽  
pp. 816-822
Author(s):  
Igor V. Adamovich ◽  
Vish V. Subramaniam ◽  
J. W. Rich ◽  
Sergey O. Macheret

2013 ◽  
Vol 46 (23) ◽  
pp. 235501 ◽  
Author(s):  
Romain Ecault ◽  
Laurent Berthe ◽  
Michel Boustie ◽  
Fabienne Touchard ◽  
Emilien Lescoute ◽  
...  

1988 ◽  
Vol 190 ◽  
pp. 409-425 ◽  
Author(s):  
J. P. Dear ◽  
J. E. Field

This paper describes a method for examining the collapse of arrays of cavities using high-speed photography and the results show a variety of different collapse mechanisms. A two-dimensional impact geometry is used to enable processes occurring inside the cavities such as jet motion, as well as the movement of the liquid around the cavities, to be observed. The cavity arrangements are produced by first casting water/gelatine sheets and then forming circular holes, or other desired shapes, in the gelatine layer. The gelatine layer is placed between two thick glass blocks and the array of cavities is then collapsed by a shock wave, visualized using schlieren photography and produced from an impacting projectile. A major advantage of the technique is that cavity size, shape, spacing and number can be accurately controlled. Furthermore, the shape of the shock wave and also its orientation relative to the cavities can be varied. The results are compared with proposed interaction mechanisms for the collapse of pairs of cavities, rows of cavities and clusters of cavities. Shocks of kbar (0.1 GPa) strength produced jets of c. 400 m s−1 velocity in millimetre-sized cavities. In closely-spaced cavities multiple jets were observed. With cavity clusters, the collapse proceeded step by step with pressure waves from one collapsed row then collapsing the next row of cavities. With some geometries this leads to pressure amplification. Jet production by the shock collapse of cavities is suggested as a major mechanism for cavitation damage.


Sign in / Sign up

Export Citation Format

Share Document