Numerical Study on Shock Wave Propagation with Obstacles during Methane Explosion

2010 ◽  
Vol 33 ◽  
pp. 114-118 ◽  
Author(s):  
Zhi Ming Qu

During shock wave propagation in the pipeline, the flow field of speed, pressure and temperature is evenly distributed. If there are obstacles, then the flow will be changed while the velocity gradient is formed near the obstacles. Passing through the obstacles, a high-speed gradient of the unburned methane mixture flow is established. While reaching the obstacle, the shock wave surface is rapidly stretched to increase the significant transmission speed. Propagating in the gradient field, the shock wave will be stretched and folded. The deformation of shock wave causes consumption of fuel and oxygen in greater unburned methane surface, which results in heat release rate increasing and faster shock propagation. In conclusion, shock wave causes larger advection speed in front of the unburned methane mixture, increasing flow velocity gradient further and leading to more intense shock wave propagation.

2008 ◽  
Vol 51 (1) ◽  
pp. 122-145 ◽  
Author(s):  
Christelle Collet ◽  
Philippe Chabin ◽  
Henri Grzeskowiak

In recent years, the phenomena occurring during shock wave propagation in spatial structures have been studied to characterize more accurately and to minimize the effects of pyrotechnical sources. As part of a program managed by the Centre National d'Etudes Spatiales (CNES, the French space agency), SNPE Matériaux Energétiques (SME) and MBDA France collaborated in a study to understand the mechanisms of shock wave propagation induced by the detonation of a linear pyrotechnical source. The focus of the study was on structures representative of space launcher structures such as those used for the Ariane 5 launcher. Various experiments were performed with metallic and composite plates, and two types of measurement devices (strain gauges and accelerometers) were investigated. Additional out-of-plane velocity and displacement measurements were provided by laser vibrometers, and displays of the separation of the plates were provided by a high-speed camera (up to 4800 feet/second). Signals treatment provided bending and compression strain describing plate mechanical responses. The apparatus used and the associated concerns that arose during the firings also are discussed.


2011 ◽  
Author(s):  
G. V. Shoev ◽  
Ye. A. Bondar ◽  
D. V. Khotyanovsky ◽  
A. N. Kudryavtsev ◽  
G. Mirshekari ◽  
...  

Shock Waves ◽  
1996 ◽  
Vol 6 (5) ◽  
pp. 287-300 ◽  
Author(s):  
P. Mazel ◽  
R. Saurel ◽  
J. -C. Loraud ◽  
P. B. Butler

2013 ◽  
Vol 50 (5) ◽  
pp. 673-684 ◽  
Author(s):  
Wen Chen ◽  
Olivier Maurel ◽  
Christian La Borderie ◽  
Thierry Reess ◽  
Antoine De Ferron ◽  
...  

2020 ◽  
pp. 234-243
Author(s):  
S.I. Skipochka ◽  
◽  
T.A. Palamarchuk ◽  
L.V. Prokhorets ◽  
V.P. Kurinnyi ◽  
...  

When studying risk factors in coal mines, it is necessary, in the first place, to consider factors and properties of the rock massif occurred with the deepening of mining operations in the coal mines, and determine one of the main types of danger: risk of geodynamic phenomena. The geodynamic phenomena occur and develop under the influence of natural and technological factors. Natural factors determine the rock massif proneness of ato geodynamic manifestations or, in other words, its potential danger due to these phenomena. Occurrence of this danger depends on technological factors. Among the dangerous factors of underground coal production to which primarily belong the geodynamic phenomena, the main ones are gas-dynamic phenomena, which are the most complex by their nature and dangerous by consequences due to high dynamic power and release of great amount of gas during a short period of time. Their consequences can be accidents due to sudden gassing and blockage of workings by coal and rock, explosions of methane and coal dust, destruction of the roadway supports, damage of machines and mechanisms, equipment and devices. As the gas-dynamic phenomena in the rocks massif are accompanied by occurrence of various processes differed by their nature, therefore, risks caused by them should be taken into account at mining operations. When considering the gas-dynamic phenomena attention should be paid to the shock wave propagation, as it is one of the gas dynamic processes. Therefore, purpose of this research was to study specific features of the shock wave propagation in the rock massif in order to prevent dangerous consequences. In this article, the authors consider the processes which occur in the rock massif prone to dangerous gas-dynamic phenomena at the shock wave propagation. The methods of rock mechanics, mechanics of continuous media, gas and thermodynamics were used in the research. Analytical researches of processes and numerical analysis of the received results were carried out. It is shown that a sharp increase of thermodynamic parameters under the action of gas-dynamic phenomena can lead to occurrence of the shock waves. It is further established that an explosive air-methane mixture can be formed in cracks, cavities and pores of the face area. At opening the cavities and pores, cases of shock waves formation in air-methane mixture leading to its detonation are possible. Under adverse conditions, this phenomenon can lead to a fire in the roadway.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
M. Shoaib ◽  
L. Kari

Elastoplastic shock wave propagation in a one-dimensional assembly of spherical metal particles is presented by extending well-established quasistatic compaction models. The compaction process is modeled by a discrete element method while using elastic and plastic loading, elastic unloading, and adhesion at contacts with typical dynamic loading parameters. Of particular interest is to study the development of the elastoplastic shock wave, its propagation, and reflection during entire loading process. Simulation results yield information on contact behavior, velocity, and deformation of particles during dynamic loading. Effects of shock wave propagation on loading parameters are also discussed. The elastoplastic shock propagation in granular material has many practical applications including the high-velocity compaction of particulate material.


Shock Waves ◽  
1996 ◽  
Vol 6 (5) ◽  
pp. 287-300 ◽  
Author(s):  
P. Mazel ◽  
R. Saurel ◽  
J.-C. Loraud ◽  
P.B. Butler

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Gang Zhang

The shock wave propagation of the explosion in a pipe with holes was studied by a high-speed schlieren experimental system. In the experiments, schlieren images in the explosion were recorded by a high-speed camera from parallel and perpendicular orientations, respectively, and the pressure in the air was measured by an overpressure test system. In parallel orientation, it is observed that the steel pipe blocks the propagation of blast gases, but it allows the propagation of shock waves with a symmetrical shape. In perpendicular orientation, oblique shock wave fronts were observed, indicating the propagation of explosion detonation along the charge. Shock wave velocity in the hole direction is larger than that in the nonhole direction, indicating the function of holes in controlling blast energy, that is, leading blast energy to hole direction. Furthermore, the function of holes is verified by overpressure measurements in which peak overpressure in the hole direction is 0.87 KPa, 2.8 times larger than that in the nonhole direction. Finally, the variation of pressure around the explosion in a pipe with holes was analyzed by numerical simulation, qualitatively agreeing with high-speed schlieren experiments.


1979 ◽  
Author(s):  
S. G. Zaytsev ◽  
E. V. Lazareva ◽  
A. V. Mikhailova ◽  
V. L. Nikolaev-Kozlov ◽  
E. I. Chebotareva

Sign in / Sign up

Export Citation Format

Share Document