SU-FF-J-150: Experimental Demonstration of Dose Enhancement Due to Gold Nanoparticles and Kilovoltage X-Rays Using Radio-Sensitive Polymer Gel Dosimeter

2009 ◽  
Vol 36 (6Part8) ◽  
pp. 2511-2511 ◽  
Author(s):  
A Siddiqi ◽  
Y Yang ◽  
K Dextraze ◽  
T Hu ◽  
S Krishnan ◽  
...  
2019 ◽  
Vol 75 (5) ◽  
pp. 415-423
Author(s):  
Seung Young Ko ◽  
Soo-Il Kwon ◽  
Junchul Chun ◽  
Hyun Soo Shin ◽  
Sei Kyung Chang ◽  
...  

Author(s):  
S F Ghoreishi ◽  
J Beik ◽  
I Shiri ◽  
K Kh Keshavarzi ◽  
S R M Mahdavi

Background:Currently, the potential application of gold nanoparticles (AuNPs) to increase the efficiency of radiation therapy has been widely investigated. However, lack of an appropriate method to estimate the dose distribution in a nanoparticle-laden tissue limits the applicability of nanoparticles in radiotherapy clinics. Polymer gel dosimetry provides an accurate and precise system that facilitates the measurement of dose distribution in full three dimensions.Objective: In this study, the effect of radiation dose enhancement of AuNPs was assessed through gel dosimetry analysis.Material and Methods: For this purpose, AuNPs were integrated in MAGIC_f polymer gel dosimeter and irradiated by 6 Mv X-ray beam. The irradiated gel was then evaluated through two modalities of magnetic resonance imaging (MRI) and optical computed tomography (OCT).Result: MRI and OCT scanning of MAGIC_f gels containing 0.1 mM AuNPs demonstrated dose enhancements of 7.8% and 6.8%, respectively.Conclusion: Polymer gel dosimetry has the potential to provide a new platform for the investigation and optimization of the applicability of nanoparticles in radiation therapy.


Author(s):  
Zh Behrouzkia ◽  
R Zohdiaghdam ◽  
H R Khalkhali ◽  
F Mousavi

Background: Gold nanoparticles (GNPs) are among the most promising radiosensitive materials in radiotherapy. Studying the effective sensitizing factors such as nanoparticle size, concentration, surface features, radiation energy and cell type can help to optimize the effect and possible clinical application of GNPs in radiation therapy. In this study, the radiation sensitive polymer gel was used to investigate the dosimetric effect of GNP size in megavoltage (MV) photon beam radiotherapy.Material and Methods: GNPs with the size of 30nm, 50nm and 100nm in diameter were used. Transmission electron microscope (TEM) and dynamic light scattering (DLS) were applied to analyze the size of nanoparticles. The MAGICA polymer gel was synthesized and impregnated with different sizes of GNPs. The samples were irradiated with 6MV photon beam and 24 hours after irradiation, they were read using a Magnetic Resonance Imaging (MRI) scanner. Macroscopic Dose Enhancement Factor (DEF) was measured to compare the effect of GNP size. The MAGICA response of the 6MV x-ray beam was verified comparing Percentage Depth Dose (PDD) curve extracted from polymer gel dosimetry and Treatment Planning System (TPS).Results: MAGICA polymer gel dose response curve was linear in the range of 0 to 10 Gy. DEFs by adding 30nm, 50nm and 100nm GNPs were 1.1, 1.17 and 1.12, respectively. PDD curves of polymer gel dosimeter and treatment planning system were in good agreement.Conclusion: The results indicated a substantial increase in DEF uses a MV photon beam in combination with GNPs of different sizes and it was inconsistent with previous radiobiological studies. The maximum DEF was achieved for 50nm GNPs in comparison with 30nm and 100nm leading to the assumption of self-absorption effect by larger diameters. According to the outcomes of this work, MAGICA polymer gel can be recommended as a reliable dosimeter to investigate the dosimetric effect of GNP size and also a useful method to validate the current radiobiological and simulation studies. 


Author(s):  
Zh Behrouzkia ◽  
R Zohdiaghdam ◽  
H R Khalkhali ◽  
F Mousavi

Background: Gold nanoparticles (GNPs) are among the most promising radiosensitive materials in radiotherapy. Studying the effective sensitizing factors such as nanoparticle size, concentration, surface features, radiation energy and cell type can help to optimize the effect and possible clinical application of GNPs in radiation therapy. In this study, the radiation sensitive polymer gel was used to investigate the dosimetric effect of GNP size in megavoltage (MV) photon beam radiotherapy.Material and Methods: GNPs with the size of 30nm, 50nm and 100nm in diameter were used. Transmission electron microscope (TEM) and dynamic light scattering (DLS) were applied to analyze the size of nanoparticles. The MAGICA polymer gel was synthesized and impregnated with different sizes of GNPs. The samples were irradiated with 6MV photon beam and 24 hours after irradiation, they were read using a Magnetic Resonance Imaging (MRI) scanner. Macroscopic Dose Enhancement Factor (DEF) was measured to compare the effect of GNP size. The MAGICA response of the 6MV x-ray beam was verified comparing Percentage Depth Dose (PDD) curve extracted from polymer gel dosimetry and Treatment Planning System (TPS).Results: MAGICA polymer gel dose response curve was linear in the range of 0 to 10 Gy. DEFs by adding 30nm, 50nm and 100nm GNPs were 1.1, 1.17 and 1.12, respectively. PDD curves of polymer gel dosimeter and treatment planning system were in good agreement.Conclusion: The results indicated a substantial increase in DEF uses a MV photon beam in combination with GNPs of different sizes and it was inconsistent with previous radiobiological studies. The maximum DEF was achieved for 50nm GNPs in comparison with 30nm and 100nm leading to the assumption of self-absorption effect by larger diameters. According to the outcomes of this work, MAGICA polymer gel can be recommended as a reliable dosimeter to investigate the dosimetric effect of GNP size and also a useful method to validate the current radiobiological and simulation studies. 


Author(s):  
S Farahani ◽  
N Riyahi Alam ◽  
S Haghgoo ◽  
M Khoobi ◽  
Gh Geraily ◽  
...  

Background: Numerous unique characteristics of the nanosized gold, including high atomic number, low toxicity, and high biocompatibility make it one of the most appropriate nanostructures to boost radiotherapy efficacy. Many in-vivo and in-vitro investigations have indicated that gold nanoparticles (AuNPs) can significantly increase tumor injuries in low kilovoltage radiotherapy. While deep-lying tumors require much higher energy levels with greater penetration power, and investigations carried out in megavoltage energy range show contradictory results.Objective: In this study, we quantitatively assess and compare dose enhancement factors (DEFs) obtained through AuNPs under radiation of Cobalt-60 source (1.25MeV) versus Iridium-192 source (0.380 KeV) using MAGAT gel dosimeter.Material and Methods: MAGAT polymer gel in both pure and combined with 0.2 mM AuNPs was synthesized. In order to quantify the effect of energy on DEF, irradiation was carried out by Co-60 external radiotherapy and Ir-192 internal radiotherapy. Finally, readings of irradiated and non-irradiated gels were performed by MR imaging.Result: The radiation-induced R2 (1/T2) changes of the gel tubes doped with AuNPs compared to control samples, upon irradiation of beams released by Ir-192 source showed a significant dose enhancement (15.31% ±0.30) relative to the Co-60 external radiotherapy (5.85% ±0.14).Conclusion: This preliminary study suggests the feasibility of using AuNPs in radiation therapy (RT), especially in low-energy sources of brachytherapy. In addition, MAGAT polymer gel, as a powerful dosimeter, could be used for 3D visualization of radiation dose distribution of AuNPs in radiotherapy.


2022 ◽  
Vol 190 ◽  
pp. 109804
Author(s):  
Akbar Aliasgharzadeh ◽  
Vahid Anaraki ◽  
Daryoush Khoramian ◽  
Mahdi Ghorbani ◽  
Bagher Farhood

Sign in / Sign up

Export Citation Format

Share Document