Poster - Thur Eve - 33: A Dose-Based Metric for Evaluation of Image Registration Accuracy

2010 ◽  
Vol 37 (7Part2) ◽  
pp. 3893-3893
Author(s):  
E Heath ◽  
I Kawrakow
2021 ◽  
Author(s):  
Guillaume Cazoulat ◽  
Brian M Anderson ◽  
Molly M McCulloch ◽  
Bastien Rigaud ◽  
Eugene J Koay ◽  
...  

2004 ◽  
Vol 43 (04) ◽  
pp. 367-370 ◽  
Author(s):  
U. Morgenstern ◽  
R. Steinmeier ◽  
F. Uhlemann

Summary Objective: The registration of medical volume data sets plays an important role when different images or modalities are used during computer-assisted surgical procedures. Nevertheless, it is often questionable how robust and accurate the underlying algorithms really are. Therefore, the goal is to foster the establishment of methods for an objective evaluation. Method: To reliably calculate the accuracy of registration algorithms, a reference transformation must be known. Due to the unknown perfect registration for real clinical data, the simulation of realistic data and successive affine transformations are employed. The simulation is based on models of the respective imaging modality where the dominant physical effects are taken into account. This gives the user full control over all simulation and transformation parameters. Finally, suitable quality measures are applied which allow a systematic evaluation of image registration accuracy by comparing the known theoretical result and the transformation calculated by the algorithm under investigation. Results: During the development of a new registration algorithm, the presented method proved to be a very valuable tool for optimization and evaluation of registration accuracy, since it allows objective numerical comparison of the calculated results. Conclusions: The presented method can be used during the development of algorithms for optimization and for quantitative comparison of different registration schemes. The respective software tool can automatically generate and transform simulated but realistic data. Employing suitable numerical quality measures, an objective evaluation of registration results can be easily obtained. Still, the validity of the relatively simple models has to be verified to draw reliable conclusions with respect to real data.


2020 ◽  
Vol 47 (7) ◽  
pp. 3023-3031
Author(s):  
Hisamichi Takagi ◽  
Noriyuki Kadoya ◽  
Tomohiro Kajikawa ◽  
Shohei Tanaka ◽  
Yoshiki Takayama ◽  
...  

2017 ◽  
Vol 42 ◽  
pp. 108-111 ◽  
Author(s):  
Hideharu Miura ◽  
Shuichi Ozawa ◽  
Minoru Nakao ◽  
Kengo Furukawa ◽  
Yoshiko Doi ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1447 ◽  
Author(s):  
Yoshiki Kubota ◽  
Masahiko Okamoto ◽  
Yang Li ◽  
Shintaro Shiba ◽  
Shohei Okazaki ◽  
...  

We aimed to clarify the accuracy of rigid image registration and deformable image registration (DIR) in carbon-ion radiotherapy (CIRT) for pancreatic cancer. Six patients with pancreatic cancer who were treated with passive irradiation CIRT were enrolled. Three registration patterns were evaluated: treatment planning computed tomography images (TPCT) to CT images acquired in the treatment room (IRCT) in the supine position, TPCT to IRCT in the prone position, and TPCT in the supine position to the prone position. After warping the contours of the original CT images to the destination CT images using deformation matrices from the registration, the warped delineated contours on the destination CT images were compared with the original ones using mean displacement to agreement (MDA). Four contours (clinical target volume (CTV), gross tumor volume (GTV), stomach, duodenum) and four registration algorithms (rigid image registration [RIR], intensity-based DIR [iDIR], contour-based DIR [cDIR], and a hybrid iDIR-cDIR ([hDIR]) were evaluated. The means ± standard deviation of the MDAs of all contours for RIR, iDIR, cDIR, and hDIR were 3.40 ± 3.30, 2.2 1± 2.48, 1.46 ± 1.49, and 1.46 ± 1.37 mm, respectively. There were significant differences between RIR and iDIR, and between RIR/iDIR and cDIR/hDIR. For the pancreatic cancer patient images, cDIR and hDIR had better accuracy than RIR and iDIR.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Liang Hua ◽  
Kean Yu ◽  
Lijun Ding ◽  
Juping Gu ◽  
Xinsong Zhang ◽  
...  

A three-dimensional multimodality medical image registration method using geometric invariant based on conformal geometric algebra (CGA) theory is put forward for responding to challenges resulting from many free degrees and computational burdens with 3D medical image registration problems. The mathematical model and calculation method of dual-vector projection invariant are established using the distribution characteristics of point cloud data and the point-to-plane distance-based measurement in CGA space. The translation operator and geometric rotation operator during registration operation are built in Clifford algebra (CA) space. The conformal geometrical algebra is used to realize the registration of 3D CT/MR-PD medical image data based on the dual vector geometric invariant. The registration experiment results indicate that the methodology proposed in this paper is of stronger commonality, less computation burden, shorter time consumption, and intuitive geometric meaning. Both subjective evaluation and objective indicators show that the methodology proposed here is of high registration accuracy and suitable for 3D medical image registration.


Sign in / Sign up

Export Citation Format

Share Document