Possibility of using cylindrical ionization chambers for percent depth-dose measurements in clinical electron beams

2011 ◽  
Vol 38 (8) ◽  
pp. 4647-4654
Author(s):  
Takeshi Ono ◽  
Fujio Araki ◽  
Fumiaki Yoshiyama
2022 ◽  
Vol 12 (2) ◽  
pp. 600
Author(s):  
Serenella Russo ◽  
Silvia Bettarini ◽  
Barbara Grilli Leonulli ◽  
Marco Esposito ◽  
Paolo Alpi ◽  
...  

High-energy small electron beams, generated by linear accelerators, are used for radiotherapy of localized superficial tumours. The aim of the present study is to assess the dosimetric performance under small radiation therapy electron beams of the novel PTW microSilicon detector compared to other available dosimeters. Relative dose measurements of circular fields with 20, 30, 40, and 50 mm aperture diameters were performed for electron beams generated by an Elekta Synergy linac, with energy between 4 and 12 MeV. Percentage depth dose, transverse profiles, and output factors, normalized to the 10 × 10 cm2 reference field, were measured. All dosimetric data were collected in a PTW MP3 motorized water phantom, at SSD of 100 cm, by using the novel PTW microSilicon detector. The PTW diode E and the PTW microDiamond were also used in all beam apertures for benchmarking. Data for the biggest field size were also measured by the PTW Advanced Markus ionization chamber. Measurements performed by the microSilicon are in good agreement with the reference values for all the tubular applicators and beam energies within the stated uncertainties. This confirms the reliability of the microSilicon detector for relative dosimetry of small radiation therapy electron beams collimated by circular applicators.


1995 ◽  
Vol 22 (8) ◽  
pp. 1307-1314 ◽  
Author(s):  
P. R. Almond ◽  
Zhigang Xu ◽  
Hui Li ◽  
H. C. Park

Author(s):  
H Dowlatabadi ◽  
A A Mowlavi ◽  
M Ghorbani ◽  
S Mohammadi ◽  
F Akbari

Introduction: Radiation therapy using electron beams is a promising method due to its physical dose distribution. Monte Carlo (MC) code is the best and most accurate technique for forespeaking the distribution of dose in radiation treatment of patients.Materials and Methods: We report an MC simulation of a linac head and depth dose on central axis, along with profile calculations. The purpose of the present research is to carefully analyze the application of MC methods for the calculation of dosimetric parameters for electron beams with energies of 8–14 MeV at a Siemens Primus linac. The principal components of the linac head were simulated using MCNPX code for different applicators. Results: The consequences of measurements and simulations revealed a good agreement. Gamma index values were below 1 for most points, for all energy values and all applicators in percent depth dose and dose profile computations. A number of states exhibited rather large gamma indices; these points were located at the tail of the percent depth dose graph; these points were less used in in radiotherapy. In the dose profile graph, gamma indices of most parts were below 1. The discrepancies between the simulation results and measurements in terms of Zmax, R90, R80 and R50 were insignificant. The results of Monte Carlo simulations showed a good agreement with the measurements. Conclusion: The software can be used for simulating electron modes of a Siemens Primus linac when direct experimental measurements are not feasible.


2021 ◽  
Vol 27 (1) ◽  
pp. 25-29
Author(s):  
Labinot Kastrati ◽  
Gezim Hodolli ◽  
Sehad Kadiri ◽  
Elvin Demirel ◽  
Lutfi Istrefi ◽  
...  

Abstract Introduction: The aim of this study is to analyze the gradient of percentage depth dose for photon and electron beams of LINACs and to simplify the data set. Materials and Methods: Dosimetry measurements were performed in accordance with Technical Reports Series No. 398 IAEA. Results and discussion: The gradient of percentage depth dose was calculated and compared with the available published data. Conclusion: Instead of percentage depth dose for increasing and decreasing parts, the findings suggest using only two numbers for specific gradient of dose, separately. In this way, they can replace the whole set of the percentage depth dose (PDD).


2008 ◽  
Vol 35 (12) ◽  
pp. 5463-5470 ◽  
Author(s):  
Christian Fiandra ◽  
Riccardo Ragona ◽  
Umberto Ricardi ◽  
Silvia Anglesio ◽  
Francesca Romana Giglioli

1996 ◽  
Vol 23 (8) ◽  
pp. 1413-1420 ◽  
Author(s):  
P. M. Ostwald ◽  
T. Kron

Sign in / Sign up

Export Citation Format

Share Document