scholarly journals Erratum: “Calculation of dose distributions for 12 106 Ru/106 Rh ophthalmic applicator models with the penelope Monte Carlo code” [Med. Phys. 40, 101705 (13pp.) (2013)]

2016 ◽  
Vol 43 (2) ◽  
pp. 1020-1020
Author(s):  
M. Hermida-López
Author(s):  
Luong Thi Oanh ◽  
Duong Thanh Tai ◽  
Hoang Duc Tuan ◽  
Truong Thi Hong Loan

The purpose of this study is to verify and compare the three Dimensional Conformal Radiation Therapy (3D-CRT) dose distributions calculated by the Prowess Panther treatment planning system (TPS) with Monte Carlo (MC) simulation for head-and-neck (H&N) patients. In this study, we used the EGSnrc Monte Carlo code which includes BEAMnrc and DOSXYZnrc programs. Firstly, the clinical 6 MV photon beams form Siemens Primus linear accelerator at Dong Nai General Hospital were simulated using the BEAMnrc. Secondly, the absorbed dose to patients treated by 3D-CRT was computed using the DOSXYZnrc. Finally, the simulated dose distributions were then compared with the ones calculated by the Fast Photon Effective algorithm on the TPS, using the relative dose error comparison and the gamma index using global methods implemented in PTW-VeriSoft with 3%/3 mm. There is a good agreement between the MC and TPS dose. The average gamma passing rates were 92.8% based on the 3%/3 mm. The average dose in the PTV agreed well between the TPS with 0.97% error. MC predict dose was higher than the mean dose to the parotid glands and spinal cord compared to TPS. We have implemented the EGSnrc-based Monte Carlo simulation to verify the 3D-CRT plans generated by Prowess Panther TPS. Our results showed that the TPS agreed with the one of MC.  


2021 ◽  
Vol 9 ◽  
Author(s):  
Francesc Salvat ◽  
José Manuel Quesada

After a summary description of the theory of elastic collisions of nucleons with atoms, we present the calculation of a generic database of differential and integrated cross sections for the simulation of multiple elastic collisions of protons and neutrons with kinetic energies larger than 100 keV. The relativistic plane-wave Born approximation, with binding and Coulomb-deflection corrections, has been used to calculate a database of proton-impact ionization of K-shell and L-, M-, and N-subshells of neutral atoms These databases cover the whole energy range of interest for all the elements in the periodic system, from hydrogen to einsteinium (Z = 1–99); they are provided as part of the penh distribution package. The Monte Carlo code system penh for the simulation of coupled electron-photon-proton transport is extended to account for the effect of the transport of neutrons (released in proton-induced nuclear reactions) in calculations of dose distributions from proton beams. A simplified description of neutron transport, in which neutron-induced nuclear reactions are described as a fractionally absorbing process, is shown to give simulated depth-dose distributions in good agreement with those generated by the Geant4 code. The proton-impact ionization database, combined with the description of atomic relaxation data and electron transport in penelope, allows the simulation of proton-induced x-ray emission spectra from targets with complex geometries.


2012 ◽  
Vol 20 (1-2) ◽  
pp. 3-7 ◽  
Author(s):  
Bahreyni Toossi ◽  
Mahdi Ghorbani ◽  
Asghar Mowlavi ◽  
Abdolreza Hashemian ◽  
Soleimani Meigooni

Background: Treatment planning systems (TPSs) are used for dose calculations in dose delivery by after loading brachytherapy machines. Such planning systems usually use simplified algorithms in their dose calculations. Verification of dose distributions produced by TPS is of clinical importance and is part of a quality assurance program. In this study, the dose distributions generated by GZP6 TPS for two GZP6 sources were verified. Methods: The evaluation was based on the inter comparisons between the isodose curves obtained through Monte Carlo simulations, radiochromic film measurements, and GZP6 treatment planning system. MCNPX Monte Carlo code was used to simulate the sources. Dose measurements were performed in a perspex phantom using Gafchromic? EBT radiochromic films. Comparisons between the results obtained from MC, RCF, and TPS were performed by gamma function calculations with 5% dose/2 mm distance criterion. Results: Based on gamma calculations our results showed that there was good agreement between the dose distributions obtained by the three aforementioned methods in both transverse and longitudinal planes for the GZP6 source No.2. However, for source No. 5, the agreement was good in the transverse plane but it was low in the longitudinal plane. Conclusion: The results showed that dose distributions certified by the GZP6 TPS for the GZP6 source No. 2 were validated. However, for source No. 5 some discrepancies were observed. Accurate knowledge of the activity of each active pellet in the source No. 5 can clarify the cause of the discrepancies.


2012 ◽  
Vol 81 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Abdelkader Toutaoui ◽  
Nadia Khelassi-Toutaoui ◽  
Zakia Brahimi ◽  
Ahmed Chafik Chami

2014 ◽  
Vol 111 ◽  
pp. S181
Author(s):  
A. Cano-Herranz ◽  
C. Delgado-Soler ◽  
N. Anducas-Santiago ◽  
M. Hermida-López

Sign in / Sign up

Export Citation Format

Share Document