Effects of physics change in Monte Carlo code on electron pencil beam dose distributions

2012 ◽  
Vol 81 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Abdelkader Toutaoui ◽  
Nadia Khelassi-Toutaoui ◽  
Zakia Brahimi ◽  
Ahmed Chafik Chami
2010 ◽  
Vol 37 (6Part21) ◽  
pp. 3276-3276
Author(s):  
C Altunbas ◽  
M Miften ◽  
K Stuhr ◽  
L Gaspar ◽  
B Kavanagh

Author(s):  
Luong Thi Oanh ◽  
Duong Thanh Tai ◽  
Hoang Duc Tuan ◽  
Truong Thi Hong Loan

The purpose of this study is to verify and compare the three Dimensional Conformal Radiation Therapy (3D-CRT) dose distributions calculated by the Prowess Panther treatment planning system (TPS) with Monte Carlo (MC) simulation for head-and-neck (H&N) patients. In this study, we used the EGSnrc Monte Carlo code which includes BEAMnrc and DOSXYZnrc programs. Firstly, the clinical 6 MV photon beams form Siemens Primus linear accelerator at Dong Nai General Hospital were simulated using the BEAMnrc. Secondly, the absorbed dose to patients treated by 3D-CRT was computed using the DOSXYZnrc. Finally, the simulated dose distributions were then compared with the ones calculated by the Fast Photon Effective algorithm on the TPS, using the relative dose error comparison and the gamma index using global methods implemented in PTW-VeriSoft with 3%/3 mm. There is a good agreement between the MC and TPS dose. The average gamma passing rates were 92.8% based on the 3%/3 mm. The average dose in the PTV agreed well between the TPS with 0.97% error. MC predict dose was higher than the mean dose to the parotid glands and spinal cord compared to TPS. We have implemented the EGSnrc-based Monte Carlo simulation to verify the 3D-CRT plans generated by Prowess Panther TPS. Our results showed that the TPS agreed with the one of MC.  


2021 ◽  
Vol 9 ◽  
Author(s):  
Francesc Salvat ◽  
José Manuel Quesada

After a summary description of the theory of elastic collisions of nucleons with atoms, we present the calculation of a generic database of differential and integrated cross sections for the simulation of multiple elastic collisions of protons and neutrons with kinetic energies larger than 100 keV. The relativistic plane-wave Born approximation, with binding and Coulomb-deflection corrections, has been used to calculate a database of proton-impact ionization of K-shell and L-, M-, and N-subshells of neutral atoms These databases cover the whole energy range of interest for all the elements in the periodic system, from hydrogen to einsteinium (Z = 1–99); they are provided as part of the penh distribution package. The Monte Carlo code system penh for the simulation of coupled electron-photon-proton transport is extended to account for the effect of the transport of neutrons (released in proton-induced nuclear reactions) in calculations of dose distributions from proton beams. A simplified description of neutron transport, in which neutron-induced nuclear reactions are described as a fractionally absorbing process, is shown to give simulated depth-dose distributions in good agreement with those generated by the Geant4 code. The proton-impact ionization database, combined with the description of atomic relaxation data and electron transport in penelope, allows the simulation of proton-induced x-ray emission spectra from targets with complex geometries.


Sign in / Sign up

Export Citation Format

Share Document