scholarly journals Long‐range, range‐dependent, acoustic propagation simulation using a full‐wave, finite‐element model coupled with a one‐way parabolic equation model

1988 ◽  
Vol 84 (S1) ◽  
pp. S90-S90 ◽  
Author(s):  
Stanley A. Chin‐Bing ◽  
Joseph E. Murphy
2016 ◽  
Vol 24 (03) ◽  
pp. 1650019 ◽  
Author(s):  
Katherine Woolfe ◽  
Michael D. Collins ◽  
David C. Calvo ◽  
William L. Siegmann

The accuracy of the seismo-acoustic parabolic equation is tested for problems involving sloping solid–solid interfaces and variable topography. The approach involves approximating the medium in terms of a series of range-independent regions, using a parabolic wave equation to propagate the field through each region, and applying a single-scattering approximation to obtain transmitted fields across the vertical interfaces between regions. The accuracy of the parabolic equation method for range-dependent problems in seismo-acoustics was previously tested in the small slope limit. It is tested here for problems involving larger slopes using a finite-element model to generate reference solutions.


2016 ◽  
Vol 24 (04) ◽  
pp. 1650022 ◽  
Author(s):  
Katherine Woolfe ◽  
Michael D. Collins ◽  
David C. Calvo ◽  
William L. Siegmann

The accuracy of the seismo-acoustic parabolic equation is tested for problems involving sloping fluid–solid interfaces. The fluid may correspond to the ocean or a sediment layer that only supports compressional waves. The solid may correspond to ice cover or a sediment layer that supports compressional and shear waves. The approach involves approximating the medium in terms of a series of range-independent regions, using a parabolic wave equation to propagate the field through each region, and applying single-scattering approximations to obtain transmitted fields across the vertical interfaces between regions. The accuracy of the parabolic equation method for range-dependent problems in seismo-acoustics was previously tested in the small slope limit. It is tested here for problems involving larger slopes using a finite-element model to generate reference solutions.


2018 ◽  
Vol 26 (04) ◽  
pp. 1850013
Author(s):  
Joseph M. Fialkowski ◽  
Michael D. Collins ◽  
David C. Calvo ◽  
Altan Turgut

Single-scattering operators are used to extend the seismo-acoustic parabolic equation to problems involving transitions between areas with and without ice cover, which are common in the marginal ice zone. Gradual transitions are handled with single-scattering operators for sloping fluid–solid interfaces. Sudden transitions, which may occur when the ice fractures and drifts, are handled with a single-scattering operator that conserves normal displacement and tangential stress across the vertical interfaces between the range-independent regions that are used to approximate a range-dependent environment. The approach is tested by making comparisons with a finite-element model for problems involving range-dependent features in the ice cover and in a sediment that supports shear waves.


Sign in / Sign up

Export Citation Format

Share Document