Temporal integration functions of amplitude modulation depth discrimination: can multiple‐looks model explain this

2008 ◽  
Vol 123 (5) ◽  
pp. 3860-3860
Author(s):  
Jungmee Lee ◽  
Derek Edwards ◽  
Jennifer Andrews ◽  
Heather Murray
2008 ◽  
Vol 123 (5) ◽  
pp. EL111-EL115 ◽  
Author(s):  
Derek R. Edwards ◽  
Jungmee Lee ◽  
Jennifer Andrews ◽  
Aileen Wong

2008 ◽  
Vol 123 (5) ◽  
pp. 3859-3859
Author(s):  
Stephan D. Ewert ◽  
Jutta Volmer ◽  
Torsten Dau ◽  
Jesko Verhey

2007 ◽  
Vol 97 (1) ◽  
pp. 522-539 ◽  
Author(s):  
Paul C. Nelson ◽  
Laurel H. Carney

Neural responses to amplitude-modulated (AM) tones in the unanesthetized rabbit inferior colliculus (IC) were studied in an effort to establish explicit relationships between physiological and psychophysical measures of temporal envelope processing. Specifically, responses to variations in modulation depth ( m) at the cell’s best modulation frequency, with and without modulation maskers, were quantified in terms of average rate and synchronization to the envelope over the entire perceptual dynamic range of depths. Statistically significant variations in the metrics were used to define neural AM detection and discrimination thresholds. Synchrony emerged at modulation depths comparable with psychophysical AM detection sensitivities in some neurons, whereas the lowest rate-based neural thresholds could not account for psychoacoustical thresholds. The majority of rate thresholds (85%) were −10 dB or higher (in 20 log m), and 16% of the population exhibited no systematic dependence of average rate on m. Neural thresholds for AM detection did not decrease systematically at higher SPLs (as observed psychophysically): thresholds remained constant or increased with level for most cells tested at multiple sound-pressure levels (SPLs). At depths higher than the rate-based detection threshold, some rate modulation-depth functions were sufficiently steep with respect to the across-trial variability of the rate to predict depth discrimination thresholds as low as 1 dB (comparable with the psychophysics). Synchrony, on the other hand, did not vary systematically with m in many cells at high modulation depths. A simple computational model was extended to reproduce several features of the modulation frequency and depth dependence of both transient and sustained pure-tone responders.


2018 ◽  
Vol 6 ◽  
Author(s):  
Rao Li ◽  
Youen Jiang ◽  
Zhi Qiao ◽  
Canhong Huang ◽  
Wei Fan ◽  
...  

Polarization mode dispersion (PMD) in fibers for high-power lasers can induce significant frequency modulation to amplitude modulation (FM-to-AM) conversion. However, existing techniques are not sufficiently flexible to achieve efficient compensation for such FM-to-AM conversion. By analyzing the nonuniform transmission spectrum caused by PMD, we found that the large-scale envelope of the transmission spectrum has more serious impacts on the amount of AM. In order to suppress the PMD-induced FM-to-AM conversion, we propose a novel tunable spectral filter with multiple degrees of freedom based on a half-wave plate, a nematic liquid crystal, and an axis-rotated polarization-maintaining fiber. Peak wavelength, free spectral range (FSR), and modulation depth of the filter are decoupled and can be controlled independently, which is verified through both simulations and experiments. The filter is utilized to compensate for the PMD-induced FM-to-AM conversion in the front end of a high-power laser facility. The results indicate that, for a pulse with phase-modulation frequency of 22.82 GHz, the FM-to-AM conversion could be reduced from 18% to 3.2% within a short time and maintained below 6.5% for 3 h. The proposed filter is also promising for other applications that require flexible spectral control such as high-speed channel selection in optical communication networks.


2021 ◽  
Author(s):  
Jessica Monaghan ◽  
Robert P. Carlyon ◽  
John M. Deeks

Cochlear implants (CIs) convey the amplitude envelope of speech by modulating high-rate pulse-trains. However, not all of the envelope may be necessary to perceive amplitude modulations (AM); the effective envelope depth may be limited by forward and backward masking from the envelope peaks. Three experiments used modulated pulse-trains to measure which portions of the envelope can be effectively processed by CI users as a function of AM frequency. Experiment 1 used a three-interval forced-choice task to test the ability of CI users to discriminate less-modulated pulse trains from a fully-modulated standard, without controlling for loudness. The stimuli in Experiment 2 were identical, but a two-interval task was used in which participants were required to choose the less-modulated interval, ignoring loudness. Catch trials, in which judgements based on level or modulation depth would give opposing answers were included. Experiment 3 employed novel stimuli whose modulation envelope could be modified below a variable point in the dynamic range, without changing the loudness of the stimulus. Overall, results showed that substantial portions of the envelope are not accurately encoded by CI users. Experiment 1, where loudness cues were available, participants on average were insensitive to changes in the bottom 30% of their dynamic range. In Experiment 2, where loudness was controlled, participants appeared insensitive to changes in the bottom 50% of the dynamic range. In Experiment 3, participants were insensitive to changes in the bottom 80% of the dynamic range. We discuss potential reasons for this insensitivity and implications for CI speech-processing strategies.


Sign in / Sign up

Export Citation Format

Share Document