scholarly journals Free vibration of a rotating annular plate including the effect of bending, membrane, shear deformation, and rotatory inertia

1993 ◽  
Vol 93 (4) ◽  
pp. 2333-2333
Author(s):  
André Côté ◽  
Noureddine Atalla ◽  
Jean Nicolas
1997 ◽  
Vol 119 (4) ◽  
pp. 641-643 ◽  
Author(s):  
A. Coˆte´ ◽  
N. Atalla ◽  
J. Nicolas

This Tech Brief addresses the effects of shear deformation and rotary inertia on the free vibration of a rotating annular plate. Several studies have been done to understand these effects (Irie et al, 1982; Sinha, 1987). In particular, the importance of these terms is well known for disks with a thickness ratio h/a > 0.05 where h is the thickness of the disk and a is its outer radius. However, there is a need to show how they affect the disk vibration as the thickness ratio increases. It is well accepted that shear deformation and rotary inertia should be included in the analysis when h/a > 0.05 (Batoz and Dhatt, 1990). However, this Tech Brief will show that this criterion is not valid for all the modes. It will present the evolution of the number of modes correctly evaluated versus the thickness ratio, and, finally, will give a heuristic criterion to predict when it is necessary to consider shear deformation and rotary inertia.


2017 ◽  
Vol 17 (10) ◽  
pp. 1750111
Author(s):  
Ugurcan Eroglu ◽  
Ekrem Tufekci

In this paper, a procedure based on the transfer matrix method for obtaining the exact solution to the equations of free vibration of damaged frame structures, considering the effects of axial extension, shear deformation, rotatory inertia, and all compliance components arising due to the presence of a crack, is presented. The crack is modeled by a rotational and/or translational spring based on the concept of linear elastic fracture mechanics. Only the in-plane motion of planar structures is considered. The formulation is validated through some examples existing in the literature. Additionally, the mode shapes and natural frequencies of a frame with pitched roof are provided. The variation of natural frequencies with respect to the crack location is presented. It is concluded that considering the axial compliance, and axial-bending coupling due to the presence of a crack results in different dynamic characteristics, which should be considered for problems where high precision is required, such as for the crack identification problems.


2020 ◽  
Vol 71 (7) ◽  
pp. 853-867
Author(s):  
Phuc Pham Minh

The paper researches the free vibration of a rectangular plate with one or more cracks. The plate thickness varies along the x-axis with linear rules. Using Shi's third-order shear deformation theory and phase field theory to set up the equilibrium equations, which are solved by finite element methods. The frequency of free vibration plates is calculated and compared with the published articles, the agreement between the results is good. Then, the paper will examine the free vibration frequency of plate depending on the change of the plate thickness ratio, the length of cracks, the number of cracks, the location of cracks and different boundary conditions


Author(s):  
Param D. Gajbhiye ◽  
Vishisht Bhaiya ◽  
Yuwaraj M. Ghugal

In the present study, a 5th order shear deformation theory (5th OSDT) is presented for free vibration analysis of simply supported thick isotropic plates. Governing equations and boundary conditions are evaluated using the concept of virtual work. Numerical results for free vibration analysis include the effects of side to thickness and plate aspect ratios for simply supported thick isotropic plates. Non-dimensional bending mode frequencies, non-dimensional thickness shear mode frequencies and non-dimensional thickness stretch mode frequencies are obtained. Closed form analytical solutions for simply supported isotropic thick plates subjected to single sinusoidal distributed loads are obtained for comparison purpose. The problems considered in this study are solved using MATLAB software. Non-dimensional bending frequencies and non-dimensional thickness shear mode frequencies obtained through the 5th OSDT match well with the exact analytical and exponential shear deformation theory (ESDT) results. Further, the non-dimensional thickness stretch mode frequencies are found to be imaginary.


Sign in / Sign up

Export Citation Format

Share Document