Sound radiation from a centrifugal blower in a free field.

1996 ◽  
Vol 99 (4) ◽  
pp. 2509-2529
Author(s):  
Shigong Su ◽  
Sean F. Wu ◽  
Morris Y. Hsi
1999 ◽  
Author(s):  
Christopher L. Banks ◽  
Sean F. Wu

Abstract This paper presents the results of an ongoing investigation of noise radiation from centrifugal blowers used in passenger vehicles. The semi-empirical formulation previously derived by the authors (1998) for predicting noise spectra of centrifugal blowers running in a free field is extended to centrifugal blowers installed in a HVAC scroll housing. Because of the presence of the scroll and cutoff, the flow fields are different from those in a free field. Accordingly, the noise generation mechanisms become much more difficult to analyze and model. The previous model assumed a monopole type sound radiation pattern, and predicted the broadband component of the noise spectra well. This model is extended to include the contributions of both monopole and directional dipole sound radiation. It is this complex radiation that is characteristic of a centrifugal blower situated inside a scroll housing with a cutoff. Comparisons of the calculated and measured noise spectra were demonstrated, and good agreements were obtained in all cases.


Measurement ◽  
2021 ◽  
pp. 110605
Author(s):  
Paolo Gardonio ◽  
Roberto Rinaldo ◽  
Loris Dal Bo ◽  
Roberto Del Sal ◽  
Emanuele Turco ◽  
...  

1997 ◽  
Vol 119 (2) ◽  
pp. 271-282 ◽  
Author(s):  
G. C. Gaunaurd ◽  
T. J. Eisler

In classical electrodynamics (CED) P. Dirac used the average of retarded and advanced fields to represent the bound field and their difference to represent the free field in his derivation of the (Lorentz-Dirac) equation of motion for an electron. The latter skew-symmetric combination filtered out the radiation part of the field. It can also be used to derive many properties of the power radiated by acoustic sources, such as angular and frequency distributions. As in CED there is radiation due to source acceleration and radiation patterns exhibit the “headlight effect.” Power radiation patterns are obtained by this approach for point multipoles undergoing various motions. Applications to sound radiation problems from rotating machinery are shown. Numerous computed plots illustrate all cases.


1994 ◽  
Author(s):  
Yutaka Ohta ◽  
Elsuke Outa ◽  
Klyohiro Tajima

The blade-passing frequency noise, abbreviated to BPF noise, of low specific speed centrifugal blower is analyzed by separating the frequency-response of the transmission passage and the intensity of the noise source. Frequency-response has previously been evaluated by the authors using a one-dimensional linear wave model, and the results have agreed well with the experimental response in a practical range of the blower speed. In the present study, the intensity of the noise source is estimated by introducing the quasi-steady model of the blade wake impingement on the scroll surface. The effective location of the noise source is determined by analyzing the cross-correlation between measured data of the blower suction noise and pressure fluctuation on the scroll surface. Then, the surface density distribution of a dipole noise source is determined from pressure fluctuation expressed in terms of quasi-steady dynamic pressure of the traveling blade wake. Finally, the free-field noise level is predicted by integrating the density spectrum of the noise source over the effective source area. The sound pressure level of the blower suction noise is easily predicted by multiplying the free-field noise level by the frequency-response characteristics of the noise transmission passage.


1996 ◽  
Vol 118 (3) ◽  
pp. 597-605 ◽  
Author(s):  
Y. Ohta ◽  
E. Outa ◽  
K. Tajima

The blade-passing frequency noise, abbreviated to BPF noise, of a low-specific-speed centrifugal blower is analyzed by separating the frequency response of the transmission passage and the intensity of the noise source. Frequency response has previously been evaluated by the authors using a one-dimensional linear wave model, and the results have agreed well with the experimental response in a practical range of the blower speed. In the present study, the intensity of the noise source is estimated by introducing the quasi-steady model of the blade wake impingement on the scroll surface. The effective location of the noise source is determined by analyzing the cross-correlation between measured data of the blower suction noise and pressure fluctuation on the scroll surface. Then, the surface density distribution of a dipole noise source is determined from pressure fluctuation expressed in terms of quasi-steady dynamic pressure of the traveling blade wake. Finally, the free-field noise level is predicted by integrating the density spectrum of the noise source over the effective source area. The sound pressure level of the blower suction noise is easily predicted by multiplying the free-field noise level by the frequency-response characteristics of the noise transmission passage.


2019 ◽  
Vol 62 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Jessica M. Wess ◽  
Joshua G. W. Bernstein

PurposeFor listeners with single-sided deafness, a cochlear implant (CI) can improve speech understanding by giving the listener access to the ear with the better target-to-masker ratio (TMR; head shadow) or by providing interaural difference cues to facilitate the perceptual separation of concurrent talkers (squelch). CI simulations presented to listeners with normal hearing examined how these benefits could be affected by interaural differences in loudness growth in a speech-on-speech masking task.MethodExperiment 1 examined a target–masker spatial configuration where the vocoded ear had a poorer TMR than the nonvocoded ear. Experiment 2 examined the reverse configuration. Generic head-related transfer functions simulated free-field listening. Compression or expansion was applied independently to each vocoder channel (power-law exponents: 0.25, 0.5, 1, 1.5, or 2).ResultsCompression reduced the benefit provided by the vocoder ear in both experiments. There was some evidence that expansion increased squelch in Experiment 1 but reduced the benefit in Experiment 2 where the vocoder ear provided a combination of head-shadow and squelch benefits.ConclusionsThe effects of compression and expansion are interpreted in terms of envelope distortion and changes in the vocoded-ear TMR (for head shadow) or changes in perceived target–masker spatial separation (for squelch). The compression parameter is a candidate for clinical optimization to improve single-sided deafness CI outcomes.


Sign in / Sign up

Export Citation Format

Share Document