field sound
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 23)

H-INDEX

21
(FIVE YEARS 1)

Author(s):  
Д. В. Монич ◽  
И. В. Матвеева ◽  
П. А. Гребнев ◽  
Д. С. Кузьмин

Состояние проблемы. Звукоизоляция легких перегородок значительно зависит от места их установки в здании. Необходимы исследования структуры звукового поля в несоразмерных помещениях и анализ его влияния на звукоизоляцию легких ограждений. Результаты. Проведены натурные и лабораторные экспериментальные исследования звукоизоляции каркасно-обшивной перегородки, установленной в коридоре. Для случая соразмерного помещения получена хорошая сходимость результатов. Теоретически исследована структура звукового поля при зеркальном отражении звука (с использованием метода прослеживания лучей). Выполнены расчеты с получением распределений долей осевых, касательных и косых лучей в помещениях, расчеты уровней интенсивности звуковых волн, падающих на боковые стены и потолок коридора. Учитывалось положение источника шума относительно перегородки и других ограждений. Выводы. Пропорции помещений влияют на звукоизоляцию легких ограждений. В диапазоне ниже граничной частоты диффузности несоразмерного помещения с источником шума структура звукового поля неоднородная, звуковые лучи падают на ограждение неравномерно с различных направлений. Это приводит к уменьшению совпадений мод колебаний в воздухе и в ограждающей конструкции, частотная характеристика звукоизоляции ограждения имеет пикообразный вид. Statement of the problem. Sound insulation of lightweight partitions depends significantly on the place of installation in the building. It is necessary to study the structure of the sound field in disproportionate rooms and analyze its effect on the sound insulation of light enclosures. Results. Natural and laboratory experimental studies of the sound insulation of the frame partitions installed in the corridor were carried out. For the case of a commensurate room, good convergence of the results was obtained. The structure of the sound field with mirror reflection of sound has been theoretically investigated using the method of tracing of sound rays. Calculations were performed to obtain the distributions of the proportions of axial sound rays, tangential sound rays, oblique sound rays in the premises, and the calculations of the intensity levels of sound waves incident on the lightweight partition and other enclosures of the corridor. The position of the noise source relative to the lightweight partition and other enclosures of the corridor was taken into account. Conclusions. The proportions of the rooms affect the sound insulation of lightweight enclosures. The structure of the sound field of a disproportionate room with a noise source is non-uniform in the range below the boundary frequency of diffuse sound field. Sound rays fall on the lightweight partition unevenly from different directions. This leads to a decrease in the coincidence of wave modes in the air and wave modes in the lightweight partition. The frequency characteristic of the sound insulation of the lightweight partition has a peak-like appearance.


Measurement ◽  
2021 ◽  
pp. 110605
Author(s):  
Paolo Gardonio ◽  
Roberto Rinaldo ◽  
Loris Dal Bo ◽  
Roberto Del Sal ◽  
Emanuele Turco ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wenjie Guo ◽  
Zhou Yang ◽  
Yueyang Han

The vibration response and far-field sound radiation of a semisubmerged, finite cylindrical shell with low-frequency excitation are studied. The solution to this problem can be divided into two steps. The first step is to apply the wave propagation approach to determine the vibration response of the cylindrical shell. In the cylindrical coordinate system, the Flügge shell equations and Laplace equation are used to describe the cylindrical shell and surrounding fluid so that the vibration responses of the shell can be addressed analytically. The fluid free surface effect is taken into account by applying the sine series to force the velocity potential on the free surface to be zero. Furthermore, compared with the FEM (the finite element method), the present method is not only reliable but also effective. In the second step, the far-field sound radiation is solved by the Fourier transform technique and the stationary phase method in accordance with the vibration responses of the shell from the previous step. The boundary element method is applied to validate the reliability of the acoustical radiation calculation. The circumferential directivity of far-field sound pressure is discussed, and it is found that the maximum value of the sound pressure always appears directly under the structure when the driving frequencies are relatively low. Besides, in consideration of simplicity and less computation effort, the present method can be used for the rapid prediction of the vibration and far-field sound pressure of a semisubmerged cylindrical shell with low-frequency excitation.


2021 ◽  
Vol 180 ◽  
pp. 108092
Author(s):  
M. Pereira ◽  
P.H. Mareze ◽  
L. Godinho ◽  
P. Amado-Mendes ◽  
J. Ramis

2021 ◽  
Vol 119 (8) ◽  
pp. 084103
Author(s):  
Shuaixing Wang ◽  
Yong Xiao ◽  
Jiajia Guo ◽  
Hao Zhang ◽  
Jihong Wen

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
HsuehJui Lu ◽  
Tsukasa Yoshinaga ◽  
ChungGang Li ◽  
Kazunori Nozaki ◽  
Akiyoshi Iida ◽  
...  

AbstractThe effects of the inclination angle of the incisor on the speech production of the fricative consonant /s/ was investigated using an implicit compressible flow solver. The hierarchical structure grid was applied to reduce the grid generation time for the vocal tract geometry. The airflow and sound during the pronunciation of /s/ were simulated using the adaptively switched time stepping scheme, and the angle of the incisor in the vocal tract was changed from normal position up to 30°. The results showed that increasing the incisor angle affected the flow configuration and moved the location of the high turbulence intensity region thereby decreased the amplitudes of the sound in the frequency range from 8 to 12 kHz. Performing the Fourier transform on the velocity fluctuation, we found that the position of large magnitudes of the velocity at 10 kHz shifted toward the lip outlet when the incisor angle was increased. In addition, separate acoustic simulations showed that the shift in the potential sound source position decreased the far-field sound amplitudes above 8 kHz. These results provide the underlying insights necessary to design dental prostheses for the production of sibilant fricatives.


2021 ◽  
Vol 263 (3) ◽  
pp. 3436-3447
Author(s):  
Dan Lin ◽  
Andrew Eng

Assumptions made on the ground types between sound sources and receivers can significantly impact the accuracy of environmental outdoor noise prediction. A guideline is provided in ISO 9613-2 and the value of ground factor ranges from 0 to 1, depending on the coverage of porous ground. For example, a ground absorption factor of 1 is suggested for grass ground covers. However, it is unclear if the suggested values are validated. The purpose of this study is to determine the sound absorption of different types of ground by measurements. Field noise measurements were made using an omnidirectional loudspeaker and two microphones on three different types of ground in a quiet neighborhood. One microphone was located 3ft from the loudspeaker to record near field sound levels in 1/3 and 1 octave bands every second. The other microphone was located a few hundred feet away to record far field sound in the same fashion as the near field microphone. The types of ground tested were concrete, grass, and grass with trees. Based on the measurement data, it was found that grass and trees absorb high frequency sound well and a ground factor of 1 may be used for 500Hz and up when using ISO 9613-2 methodology. However, at lower frequencies (125 Hz octave band and below), grassy ground reflects sound the same as concrete surfaces. Trees absorb more low frequency sound than grass, but less than ISO 9613-2 suggested.


Author(s):  
Jakob Christensen-Dalsgaard ◽  
Paula T. Kuokkanen ◽  
Jamie Emoto Matthews ◽  
Catherine E. Carr

The configuration of lizard ears, where sound can reach both surfaces of the eardrums, produces a strongly directional ear, but the subsequent processing of sound direction by the auditory pathway is unknown. We report here on directional responses from the first stage, the auditory nerve. We used laser vibrometry to measure eardrum responses in Tokay geckos, and in the same animals recorded 117 auditory nerve single fiber responses to free-field sound from radially distributed speakers. Responses from all fibers showed strongly lateralized activity at all frequencies, with an ovoidal directivity that resembled the eardrum directivity. Geckos are vocal and showed pronounced nerve fiber directionality to components of the call. To estimate the accuracy with which a gecko could discriminate between sound sources, we computed the Fisher information (FI) for each neuron. FI was highest just contralateral to the midline, front and back. Thus, the auditory nerve could provide a population code for sound source direction, and geckos should have a high capacity to differentiate between midline sound sources. In brain, binaural comparisons, for example by IE neurons, should sharpen the lateralized responses and extend the dynamic range of directionality.


Sign in / Sign up

Export Citation Format

Share Document