Noise source identification in high speed jets based on virtual microphone arrays

2012 ◽  
Vol 131 (4) ◽  
pp. 3429-3429
Author(s):  
Philip Morris ◽  
Yongle Du
Author(s):  
Hee-Min Noh

In this study, noise-source identification of a high-speed train was conducted using a microphone array system. The actual sound pressure level analysis of the noise source was performed using scaling factors between the real sound pressure and the beam-power output based on the assumption that the integrated area of the main beam-power lobe is equal to half that of the actual sound pressure of the noise source. Then, the scaling factors for the 144-channel microphone array were derived from analysis of the array response function, and a verification experiment was conducted using a known noise source, an air horn, located on a high-speed train moving at 240 km/h. After the verification test, noise-source identification of the high-speed train was conducted. Based on the resulting noise map of the high-speed train moving at 390 km/h, the main noise sources were determined to be the inter-coach spacing, wheels, and pantograph. The noise generated by the pantograph was then investigated in more detail. It was concluded that the pan head of the pantograph was the main noise source at a frequency of 1000 Hz.


2021 ◽  
Author(s):  
Christopher Thurman ◽  
Nikolas S. Zawodny ◽  
Nicole A. Pettingill ◽  
Leonard V. Lopes ◽  
James D. Baeder

Sign in / Sign up

Export Citation Format

Share Document