Group speed versus phase speed analysis of sound speed fluctuations in a shallow water ocean

2012 ◽  
Vol 131 (4) ◽  
pp. 3450-3450 ◽  
Author(s):  
W. A. Kuperman ◽  
Bruce D. Cornuelle ◽  
W. S. Hodgkiss ◽  
Philippe Roux
2013 ◽  
Vol 133 (4) ◽  
pp. 1945-1952 ◽  
Author(s):  
Philippe Roux ◽  
W. A. Kuperman ◽  
Bruce D. Cornuelle ◽  
Florian Aulanier ◽  
W. S. Hodgkiss ◽  
...  

2014 ◽  
Vol 22 (01) ◽  
pp. 1440002 ◽  
Author(s):  
OLEG E. GULIN ◽  
IGOR O. YAROSHCHUK

Statistical problems encountered in the study of the influence of random inhomogeneities in layered shallow water on the propagation of sound signal is considered. The study is carried out by the example of two-layer models of the sea — a stochastic Pekeris waveguide and a waveguide with a regular refraction in the water layer, which describes the presence of the thermocline. The results were obtained by statistical simulation without approximations and assumptions. In the middle frequency range for actual parameters of sound speed fluctuations in shallow sea with a loss penetrable bottom, the specific features of acoustic field statistical moments behavior have been discovered. They did not get adequate attention in the scientific literature.


2021 ◽  
Author(s):  
Nikos Bakas

<p>Forced-dissipative beta-plane turbulence in a single-layer shallow-water fluid has been widely considered as a simplified model of planetary turbulence as it exhibits turbulence self-organization into large-scale structures such as robust zonal jets and strong vortices. In this study we perform a series of numerical simulations to analyze the characteristics of the emerging structures as a function of the planetary vorticity gradient and the deformation radius. We report four regimes that appear as the energy input rate ε of the random stirring that supports turbulence in the flow increases. A homogeneous turbulent regime for low values of ε, a regime in which large scale Rossby waves form abruptly when ε passes a critical value, a regime in which robust zonal jets coexist with weaker Rossby waves when ε passes a second critical value and a regime of strong materially coherent propagating vortices for large values of ε. The wave regime which is not predicted by standard cascade theories of turbulence anisotropization and the vortex regime are studied thoroughly. Wavenumber-frequency spectra analysis shows that the Rossby waves in the second regime remain phase coherent over long times. The coherent vortices are identified using the Lagrangian Averaged Deviation (LAVD) method. The statistics of the vortices (lifetime, radius, strength and speed) are reported as a function of the large scale parameters. We find that the strong vortices propagate zonally with a phase speed that is equal or larger than the long Rossby wave speed and advect the background turbulence leading to a non-dispersive line in the wavenumber-frequency spectra.</p>


2014 ◽  
Vol 58 (1) ◽  
pp. 1-7 ◽  
Author(s):  
ZhengLin Li ◽  
Li He ◽  
RenHe Zhang ◽  
FengHua Li ◽  
YanXin Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document