Normal‐hearing listener preferences of music as a function of signal‐to‐noise‐ratio

2005 ◽  
Vol 117 (4) ◽  
pp. 2478-2478
Author(s):  
Jillian G. Barrett
2004 ◽  
Vol 116 (4) ◽  
pp. 2395-2405 ◽  
Author(s):  
Mead C. Killion ◽  
Patricia A. Niquette ◽  
Gail I. Gudmundsen ◽  
Lawrence J. Revit ◽  
Shilpi Banerjee

1992 ◽  
Vol 35 (4) ◽  
pp. 942-949 ◽  
Author(s):  
Christopher W. Turner ◽  
David A. Fabry ◽  
Stephanie Barrett ◽  
Amy R. Horwitz

This study examined the possibility that hearing-impaired listeners, in addition to displaying poorer-than-normal recognition of speech presented in background noise, require a larger signal-to-noise ratio for the detection of the speech sounds. Psychometric functions for the detection and recognition of stop consonants were obtained from both normal-hearing and hearing-impaired listeners. Expressing the speech levels in terms of their short-term spectra, the detection of consonants for both subject groups occurred at the same signal-to-noise ratio. In contrast, the hearing-impaired listeners displayed poorer recognition performance than the normal-hearing listeners. These results imply that the higher signal-to-noise ratios required for a given level of recognition by some subjects with hearing loss are not due in part to a deficit in detection of the signals in the masking noise, but rather are due exclusively to a deficit in recognition.


2019 ◽  
Vol 28 (1) ◽  
pp. 101-113 ◽  
Author(s):  
Jenna M. Browning ◽  
Emily Buss ◽  
Mary Flaherty ◽  
Tim Vallier ◽  
Lori J. Leibold

Purpose The purpose of this study was to evaluate speech-in-noise and speech-in-speech recognition associated with activation of a fully adaptive directional hearing aid algorithm in children with mild to severe bilateral sensory/neural hearing loss. Method Fourteen children (5–14 years old) who are hard of hearing participated in this study. Participants wore laboratory hearing aids. Open-set word recognition thresholds were measured adaptively for 2 hearing aid settings: (a) omnidirectional (OMNI) and (b) fully adaptive directionality. Each hearing aid setting was evaluated in 3 listening conditions. Fourteen children with normal hearing served as age-matched controls. Results Children who are hard of hearing required a more advantageous signal-to-noise ratio than children with normal hearing to achieve comparable performance in all 3 conditions. For children who are hard of hearing, the average improvement in signal-to-noise ratio when comparing fully adaptive directionality to OMNI was 4.0 dB in noise, regardless of target location. Children performed similarly with fully adaptive directionality and OMNI settings in the presence of the speech maskers. Conclusions Compared to OMNI, fully adaptive directionality improved speech recognition in steady noise for children who are hard of hearing, even when they were not facing the target source. This algorithm did not affect speech recognition when the background noise was speech. Although the use of hearing aids with fully adaptive directionality is not proposed as a substitute for remote microphone systems, it appears to offer several advantages over fixed directionality, because it does not depend on children facing the target talker and provides access to multiple talkers within the environment. Additional experiments are required to further evaluate children's performance under a variety of spatial configurations in the presence of both noise and speech maskers.


2009 ◽  
Vol 20 (01) ◽  
pp. 028-039 ◽  
Author(s):  
Elizabeth M. Adams ◽  
Robert E. Moore

Purpose: To study the effect of noise on speech rate judgment and signal-to-noise ratio threshold (SNR50) at different speech rates (slow, preferred, and fast). Research Design: Speech rate judgment and SNR50 tasks were completed in a normal-hearing condition and a simulated hearing-loss condition. Study Sample: Twenty-four female and six male young, normal-hearing participants. Results: Speech rate judgment was not affected by background noise regardless of hearing condition. Results of the SNR50 task indicated that, as speech rate increased, performance decreased for both hearing conditions. There was a moderate correlation between speech rate judgment and SNR50 with the various speech rates, such that as judgment of speech rate increased from too slow to too fast, performance deteriorated. Conclusions: These findings can be used to support the need for counseling patients and their families about the potential advantages to using average speech rates or rates that are slightly slowed while conversing in the presence of background noise.


2006 ◽  
Vol 17 (03) ◽  
pp. 157-167 ◽  
Author(s):  
Rachel A. McArdle ◽  
Richard H. Wilson

The purpose of this study was to determine the list equivalency of the 18 QuickSIN™ (Quick Speech in Noise test) lists. Individuals with normal hearing (n = 24) and with sensorineural hearing loss (n = 72) were studied. Mean recognition performances on the 18 lists by the listeners with normal hearing were 2.8 to 4.3 dB SNR (signal-to-noise ratio), whereas the range was 10.0 to 14.3 dB SNR for the listeners with hearing loss. The psychometric functions for each list showed high performance variability across lists for listeners with hearing loss but not for listeners with normal hearing. For listeners with hearing loss, Lists 4, 5, 13, and 16 fell outside of the critical difference. The data from this study suggest nine lists that provide homogenous results for listeners with and without hearing loss. Finally, there was an 8.7 dB difference in performances between the two groups indicating a more favorable signal-to-noise ratio required by the listeners with hearing loss to obtain equal performance.


2011 ◽  
Vol 22 (06) ◽  
pp. 375-386 ◽  
Author(s):  
Stella L. Ng ◽  
Christine N. Meston ◽  
Susan D. Scollie ◽  
Richard C. Seewald

Background: There is a need for objective pediatric hearing aid outcome measurement and thus a need for the evaluation of outcome measures. We explored a commercially available pediatric sentence-in-noise measure adapted for use as an aided outcome measure. Purpose: The purposes of the current study were (1) to administer an adapted BKB-SIN (Bamford-Kowal-Bench Speech-in-Noise test) to adults and children who have normal hearing and children who use hearing aids and (2) to evaluate the utility of this adapted BKB-SIN as an aided, within-subjects outcome measure for amplification strategies. Research Design: We used a mixed within and between groups design to evaluate speech recognition in noise for the three groups of participants. The children who use hearing aids were tested under the omnidirectional, directional, and digital noise reduction (DNR) conditions. Results from each group were compared to each other, and we compared results of each aided condition for the children who use hearing aids to evaluate the test utility as an aided outcome measure. Study Sample: The study sample consisted of 14 adults with normal hearing (aged 22–28 yr) and 15 children with normal hearing (aged 6–18 yr), recruited through word of mouth, and 14 children who use hearing aids (aged 9–16 yr) recruited from local audiology clinics. Data Collection and Analysis: List pairs of the BKB-SIN test were presented at 50 dB HL as follows: four list pairs to each participant with normal hearing, four list pairs in the omnidirectional condition, and two list pairs in the directional and DNR conditions. Children who use hearing aids were fitted bilaterally with laboratory devices and completed the BKB-SIN test aided. Data were plotted as mean percent of key words correct at each signal-to-noise ratio (SNR). Further, we conducted an analysis of variance for group differences and within-groups for the three aided conditions. Results: Adult participants outperformed children with normal hearing, who outperformed the children who use hearing aids. SNR-50 (signal-to-noise ratio at which listener can obtain a speech recognition score of 50% correct) scores demonstrated reliability of the adapted test implementation. The BKB-SIN test measured significant differences in performance for omnidirectional versus directional microphone conditions but not between omnidirectional and DNR conditions. Conclusions: We conclude that the adapted implementation of the BKB-SIN test can be administered reliably and feasibly. Further study is warranted to develop norms for the adapted implementation as well as to determine if an adapted implementation can be sensitive to age effects. Until such norms are developed, clinicians should refrain from comparing results from the adapted test to the test manual norms and should instead use the adapted implementation as a within-subject measure.


1995 ◽  
Vol 38 (5) ◽  
pp. 1150-1156 ◽  
Author(s):  
Sandra Gordon-Salant ◽  
Peter J. Fitzgibbons

This study investigated the hypothesis that age effects exert an increased influence on speech recognition performance as the number of acoustic degradations Of the speech signal increases. Four groups participated: young listeners with normal hearing, elderly listeners with normal hearing, young listeners with hearing loss, and elderly listeners with hearing loss. Recognition was assessed for sentence materials degraded by noise, reverberation, or time compression, either in isolation or in binary combinations. Performance scores were converted to an equivalent signal-to-noise ratio index to facilitate direct comparison of the effects of different forms of stimulus degradation. Age effects were observed primarily in multiple degradation conditions featuring time compression of the stimuli. These results are discussed in terms of a postulated change in functional signal-to-noise ratio with increasing age.


Sign in / Sign up

Export Citation Format

Share Document