scholarly journals In-situ measurements of sound reflection and sound insulation of noise barriers: Validation by means of signal-to-noise ratio calculations

Author(s):  
Massimo Garai ◽  
Paolo Guidorzi
2014 ◽  
Vol 100 (6) ◽  
pp. 1186-1201 ◽  
Author(s):  
Massimo Garai ◽  
Eric Schoen ◽  
Gottfried Behler ◽  
Beatriz Bragado ◽  
Michael Chudalla ◽  
...  

1997 ◽  
Vol 45 (7) ◽  
pp. 1035-1041 ◽  
Author(s):  
R. Thomas Zoeller ◽  
Donald L. Fletcher ◽  
Olimpia Butnariu ◽  
Christopher A. Lowry ◽  
Frank L. Moore

We predicted that a significant source of background labeling after in situ hybridization (ISH) using 35S-labeled probes is attributable to a chemical reaction between the phosphorothioate moiety of the probe [O3 P=S] and disulfides in tissue. These covalent bonds would immobilize probe in the tissue, thereby increasing background labeling. On the basis of this view, we have explored the use of N-ethylmaleimide (NEM) to irreversibly alkylate the phosphorothioate moiety of the probe and/or to alkylate free sulfhydryls in tissue to block the formation of disulfides as a method of reducing background labeling. We report that NEM can significantly decrease background labeling of 35S-labeled oligodeoxy-nucleotide or cRNA probes but does not affect specific labeling. We conclude that the use of NEM in ISH protocols, as outlined here, may be an additional element researchers may consider to improve the signal-to-noise ratio.


Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.


Author(s):  
D. C. Joy ◽  
R. D. Bunn

The information available from an SEM image is limited both by the inherent signal to noise ratio that characterizes the image and as a result of the transformations that it may undergo as it is passed through the amplifying circuits of the instrument. In applications such as Critical Dimension Metrology it is necessary to be able to quantify these limitations in order to be able to assess the likely precision of any measurement made with the microscope.The information capacity of an SEM signal, defined as the minimum number of bits needed to encode the output signal, depends on the signal to noise ratio of the image - which in turn depends on the probe size and source brightness and acquisition time per pixel - and on the efficiency of the specimen in producing the signal that is being observed. A detailed analysis of the secondary electron case shows that the information capacity C (bits/pixel) of the SEM signal channel could be written as :


Sign in / Sign up

Export Citation Format

Share Document