scholarly journals Longitudinal elastic wave control by pre-deforming semi-linear materials

2017 ◽  
Vol 142 (3) ◽  
pp. 1229-1235 ◽  
Author(s):  
Dengke Guo ◽  
Yi Chen ◽  
Zheng Chang ◽  
Gengkai Hu
2021 ◽  
pp. 101372
Author(s):  
Jingyi Zhang ◽  
Yiwen Li ◽  
Tianyu Zhao ◽  
Quan Zhang ◽  
Lei Zuo ◽  
...  

Author(s):  
Zhili Hao ◽  
Leryn Reynolds ◽  
John M. Herre

Abstract In light of recently recognized independent clinical values of longitudinal wall motion ux(t) at the common carotid artery (CCA) and the struggle on appropriate arterial indices for interpreting ux(t), this paper hypothesizes a mechanistic model of ux(t) and explores clear implications of the antegrade amplitude ux0-ante and retrograde amplitude ux0-retro of ux(t) in systole to the cardiovascular (CV) system. By examining findings on ux(t) and other relevant findings through the lens of the engineering essence of ux(t), a mechanistic model of ux(t) is hypothesized: the left ventricle (LV) base rotation is the excitation source for initiating the longitudinal elastic wave propagating along the arterial tree; wall shear stress at an artery serves as a local external source for supplying energy to the longitudinal elastic wave; and longitudinal elasticity at the arterial wall dictates the wave propagation velocity. Integrating the mechanistic model with findings on ux(t) gives rise to interpretation of ux0-ante and ux0-retro for their clear implications: longitudinal elasticity Exx at the common carotid artery (CCA) is estimated from ux0-ante, and ux0-retro is an inverse indicator of the maximum base rotation of the LV and a positive indicator of longitudinal elasticity at the ascending aorta (AA). For the first time, this model reveals the mechanisms underlying those statistical-based findings on ux(t).


Geophysics ◽  
1957 ◽  
Vol 22 (4) ◽  
pp. 813-820 ◽  
Author(s):  
William O. Murphy ◽  
Joseph W. Berg ◽  
Kenneth L. Cook

The velocity of a longitudinal elastic wave through rock at room temperature and at atmospheric pressure depends upon the nature of the rock frame, the porosity of the rock, and the nature of the pore‐filling fluid. In the present investigation longitudinal elastic wave velocities were measured for sixty synthetic cores. The rock frame consisted of sorted quartz sand grains and cement, the percentage of cement varying from ten to fifty percent. The core porosities varied from 8.8 percent to 22 percent. The velocities were measured for dry air‐filled cores and for cores saturated with various liquids. These pore‐filling liquids were distilled water, ethyl alcohol, benzene, carbon tetrachloride, and chloroform. The measured velocities ranged from 2,360 feet per second to 14,710 feet per second. The wave velocity in liquid‐filled cores of 10 percent porosity was approximately twice the velocity for cores of 20 percent porosity, the same type of cement being used in both instances. For any given core, flooded with fluids of wave velocities ranging from 3,000 to 5,000 feet per second, the maximum observed variation in core velocity was around 20 percent. The experimental data fitted the empirical linear equation [Formula: see text] where [Formula: see text] of longitudinal elastic waves passing through the flooded core; [Formula: see text] of longitudinal elastic waves in passing through the saturating fluid. The constant k depends upon the porosity of the rock and the type of cement used. The constant, C, depends upon the nature of the rock frame.


2017 ◽  
Author(s):  
◽  
Yangyang Chen

Over the past two decades, an extensive research effort has been devoted to elastic metamaterials, structured artificial materials at subwavelength scales, for elastic wave manipulations in solids. Due to the extreme values of material parameters, negative and/or positive, they achieved, the applications can range from wave and/or vibration attenuations, wave guiding and imaging, enhanced sensing, to invisible cloaking. However, conventional passive metamaterials have limitations, i.e. they can only be operated in narrow frequency regions and their functions are usually locked into space or with minor tunabilities once fabricated, lacking real time reconfigurabilities. Those limitations strongly hinder them from practical usages. With the rapid development of smart materials and structures, more and more intelligent elements are being introduced into wave propagation, vibration and sound control systems. The piezoelectric shunting technique is one well known method that receives considerable attention. In this dissertation, by leveraging the circuit control concept, both analog and digital, we propose some circuit controlled active/adaptive/hybrid/programmable metamaterials and metasurfaces for unprecedent elastic wave manipulations. Analytical, numerically and experimentally approaches are combined throughout the dissertation to illustrate design concepts, characterize wave propagation properties, and valid the designs. Specifically, active elastic metamaterials with tunable stiffness in local resonators are first designed for tunable wave and/or vibration mitigations. We then extend this concept to achieve super broadband wave attenuations with frequency-dependent stiffness elements. By introducing the variable stiffness elements to the host medium, a hybrid metamaterial is developed for switched ON/OFF wave propagations and broadband negative refractions. Based on a developed approximate transformation method, an active metamaterial is designed and placed on a plate to achieve spatially varying effective mass densities for broadband elastic trajectory control. Finally, a programmable metasurface with ultrathin-thickness is demonstrated for broadband, real-time and multifunctional wavefront manipulations in a plate. The active, adaptive, hybrid, and programmable elastic metamaterials and/or metasurfaces are still in their infant stages. The examples presented in the dissertation are transformable to different length and time scales and could serve as efficient and powerful tools in exploring some unconventional wave phenomenon in solid structures, i.e. by using concepts in quantum mechanics, where passive approaches are significantly limited. The designs could also immediately open new possibilities in elastic wave control devices including, but not limited to structural health monitoring, stealth technology, active noise control, as well as medical instrumentation and imaging.


Sign in / Sign up

Export Citation Format

Share Document