Enhanced Cycling Time-Trial Performance During Multiday Exercise With Higher-Pressure Compression Garment Wear

Author(s):  
Ewan R. Williams ◽  
James McKendry ◽  
Paul T. Morgan ◽  
Leigh Breen

Purpose: Compression garments are widely used as a tool to accelerate recovery from intense exercise and have also gained traction as a performance aid, particularly during periods of limited recovery. This study tested the hypothesis that increased pressure levels applied via high-pressure compression garments would enhance “multiday” exercise performance. Methods: A single-blind crossover design, incorporating 3 experimental conditions—loose-fitting gym attire (CON), low-compression (LC), and high-compression (HC) garments—was adopted. A total of 10 trained male cyclists reported to the laboratory on 6 occasions, collated into 3 blocks of 2 consecutive visits. Each “block” consisted of 3 parts, an initial high-intensity protocol, a 24-hour period of controlled rest while wearing the applied condition/garment (CON, LC, and HC), and a subsequent 8-km cycling time trial, while wearing the respective garment. Subjective discomfort questionnaires and blood pressure were assessed prior to each exercise bout. Power output, oxygen consumption, and heart rate were continuously measured throughout exercise, with plasma lactate, creatine kinase, and myoglobin concentrations assessed at baseline and the end of exercise, as well as 30 and 60 minutes postexercise. Results: Time-trial performance was significantly improved during HC compared with both CON and LC (HC = 277 [83], CON = 266 [89], and LC = 265 [77] W; P < .05). In addition, plasma lactate was significantly lower at 30 and 60 minutes postexercise on day 1 in HC compared with CON. No significant differences were observed for oxygen consumption, heart rate, creatine kinase, or subjective markers of discomfort. Conclusion: The pressure levels exerted via lower-limb compression garments influence their effectiveness for cycling performance, particularly in the face of limited recovery.

2003 ◽  
Vol 35 (Supplement 1) ◽  
pp. S369
Author(s):  
J Peiffer ◽  
B Garcia ◽  
J Talanian ◽  
K Macklin ◽  
I E. Faria ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Freya Bayne ◽  
Sebastien Racinais ◽  
Katya Mileva ◽  
Steve Hunter ◽  
Nadia Gaoua

Purpose: The purpose of this article was to (i) compare different modes of feedback (multiple vs. single) on 30 min cycling time-trial performance in non-cyclist’s and cyclists-triathletes, and (ii) investigate cyclists-triathlete’s information acquisition.Methods: 20 participants (10 non-cyclists, 10 cyclists-triathletes) performed two 30 min self-paced cycling time-trials (TT, ∼5–7 days apart) with either a single feedback (elapsed time) or multiple feedback (power output, elapsed distance, elapsed time, cadence, speed, and heart rate). Cyclists-triathlete’s information acquisition was also monitored during the multiple feedback trial via an eye tracker. Perceptual measurements of task motivation, ratings of perceived exertion (RPE) and affect were collected every 5 min. Performance variables (power output, cadence, distance, speed) and heart rate were recorded continuously.Results: Cyclists-triathletes average power output was greater compared to non-cyclists with both multiple feedback (227.99 ± 42.02 W; 137.27 ± 27.63 W; P &lt; 0.05) and single feedback (287.9 ± 60.07 W; 131.13 ± 25.53 W). Non-cyclist’s performance did not differ between multiple and single feedback (p &gt; 0.05). Whereas, cyclists-triathletes 30 min cycling time-trial performance was impaired with multiple feedback (227.99 ± 42.02 W) compared to single feedback (287.9 ± 60.07 W; p &lt; 0.05), despite adopting and reporting a similar pacing strategy and perceptual responses (p &gt; 0.05). Cyclists-triathlete’s primary and secondary objects of regard were power (64.95 s) and elapsed time (64.46 s). However, total glance time during multiple feedback decreased from the first 5 min (75.67 s) to the last 5 min (22.34 s).Conclusion: Cyclists-triathletes indoor 30 min cycling TT performance was impaired with multiple feedback compared to single feedback. Whereas non-cyclist’s performance did not differ between multiple and single feedback. Cyclists-triathletes glanced at power and time which corresponds with the wireless sensor networks they use during training. However, total glance time during multiple feedback decreased over time, and therefore, overloading athletes with feedback may decrease performance in cyclists-triathletes.


2014 ◽  
Vol 28 (9) ◽  
pp. 2513-2520 ◽  
Author(s):  
Renato A.S. Silva ◽  
Fernando L. Silva-Júnior ◽  
Fabiano A. Pinheiro ◽  
Patrícia F.M. Souza ◽  
Daniel A. Boullosa ◽  
...  

2008 ◽  
Vol 26 (14) ◽  
pp. 1477-1487 ◽  
Author(s):  
Marc J. Quod ◽  
David T. Martin ◽  
Paul B. Laursen ◽  
Andrew S. Gardner ◽  
Shona L. Halson ◽  
...  

2005 ◽  
Vol 94 (3) ◽  
pp. 268-276 ◽  
Author(s):  
Tanja Oosthuyse ◽  
Andrew N. Bosch ◽  
Susan Jackson

2010 ◽  
Vol 5 (2) ◽  
pp. 140-151 ◽  
Author(s):  
Mohammed Ihsan ◽  
Grant Landers ◽  
Matthew Brearley ◽  
Peter Peeling

Purpose:The effect of crushed ice ingestion as a precooling method on 40-km cycling time trial (CTT) performance was investigated.Methods:Seven trained male subjects underwent a familiarization trial and two experimental CTT which were preceded by 30 min of either crushed ice ingestion (ICE) or tap water (CON) consumption amounting to 6.8 g⋅kg-1 body mass. The CTT required athletes to complete 1200 kJ of work on a wind-braked cycle ergometer. During the CTT, gastrointestinal (Tgi) and skin (Tsk) temperatures, cycling time, power output, heart rate (HR), blood lactate (BLa), ratings of perceived exertion (RPE) and thermal sensation (RPTS) were measured at set intervals of work.Results:Precooling lowered the Tgi after ICE significantly more than CON (36.74 ± 0.67°C vs 37.27 ± 0.24°C, P < .05). This difference remained evident until 200 kJ of work was completed on the bike (37.43 ± 0.42°C vs 37.64 ± 0.21°C). No significant differences existed between conditions at any time point for Tsk, RPE or HR (P > .05). The CTT completion time was 6.5% faster in ICE when compared with CON (ICE: 5011 ± 810 s, CON: 5359 ± 820 s, P < .05).Conclusions:Crushed ice ingestion was effective in lowering Tgi and improving subsequent 40-km cycling time trial performance. The mechanisms for this enhanced exercise performance remain to be clarified.


2019 ◽  
Vol 14 (3) ◽  
pp. 323-330 ◽  
Author(s):  
Steve H. Faulkner ◽  
Iris Broekhuijzen ◽  
Margherita Raccuglia ◽  
Maarten Hupperets ◽  
Simon G. Hodder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document