Compensatory Trunk Movements in Naturalistic Reaching and Manipulation Tasks in Chronic Stroke Survivors

2020 ◽  
pp. 1-9
Author(s):  
Shanie A.L. Jayasinghe ◽  
Rui Wang ◽  
Rani Gebara ◽  
Subir Biswas ◽  
Rajiv Ranganathan

Impairment of arm movements poststroke often results in the use of compensatory trunk movements to complete motor tasks. These compensatory movements have been mostly observed in tightly controlled conditions, with very few studies examining them in more naturalistic settings. In this study, the authors quantified the presence of compensatory movements during a set of continuous reaching and manipulation tasks performed with both the paretic and nonparetic arm (in 9 chronic stroke survivors) or the dominant arm (in 20 neurologically unimpaired control participants). Kinematic data were collected using motion capture to assess trunk and elbow movement. The authors found that trunk displacement and rotation were significantly higher when using the paretic versus nonparetic arm (P = .03). In contrast, elbow angular displacement was significantly lower in the paretic versus nonparetic arm (P = .01). The reaching tasks required significantly higher trunk compensation and elbow movement than the manipulation tasks. These results reflect increased reliance on compensatory trunk movements poststroke, even in everyday functional tasks, which may be a target for home rehabilitation programs. This study provides a novel contribution to the rehabilitation literature by examining the presence of compensatory movements in naturalistic reaching and manipulation tasks.

2019 ◽  
Vol 6 ◽  
pp. 205566831983163 ◽  
Author(s):  
Shayne Lin ◽  
Jotvarinder Mann ◽  
Avril Mansfield ◽  
Rosalie H Wang ◽  
Jocelyn E Harris ◽  
...  

Introduction Homework-based rehabilitation programs can help stroke survivors restore upper extremity function. However, compensatory motions can develop without therapist supervision, leading to sub-optimal recovery. We developed a visual feedback system using a live video feed or an avatar reflecting users' movements so users are aware of compensations. This pilot study aimed to evaluate validity (how well the avatar characterizes different types of compensations) and acceptability of the system. Methods Ten participants with chronic stroke performed upper-extremity exercises under three feedback conditions: none, video, and avatar. Validity was evaluated by comparing agreement on compensations annotated using video and avatar images. A usability survey was administered to participants after the experiment to obtain information on acceptability. Results There was substantial agreement between video and avatar images for shoulder elevation and hip extension (Cohen's κ: 0.6–0.8) and almost perfect agreement for trunk rotation and flexion (κ: 0.80–1). Acceptability was low due to lack of corrective prompts and occasional noise with the avatar display. Most participants suggested that an automatic compensation detection feature with visual and auditory cuing would improve the system. Conclusion The avatar characterized four types of compensations well. Future work will involve increasing sensitivity for shoulder elevation and implementing a method to detect compensations.


2017 ◽  
Vol 31 (6) ◽  
pp. 499-508 ◽  
Author(s):  
Ulrike Hammerbeck ◽  
Nada Yousif ◽  
Damon Hoad ◽  
Richard Greenwood ◽  
Jörn Diedrichsen ◽  
...  

Background. Recovery from stroke is often said to have “plateaued” after 6 to 12 months. Yet training can still improve performance even in the chronic phase. Here we investigate the biomechanics of accuracy improvements during a reaching task and test whether they are affected by the speed at which movements are practiced. Method. We trained 36 chronic stroke survivors (57.5 years, SD ± 11.5; 10 females) over 4 consecutive days to improve endpoint accuracy in an arm-reaching task (420 repetitions/day). Half of the group trained using fast movements and the other half slow movements. The trunk was constrained allowing only shoulder and elbow movement for task performance. Results. Before training, movements were variable, tended to undershoot the target, and terminated in contralateral workspace (flexion bias). Both groups improved movement accuracy by reducing trial-to-trial variability; however, change in endpoint bias (systematic error) was not significant. Improvements were greatest at the trained movement speed and generalized to other speeds in the fast training group. Small but significant improvements were observed in clinical measures in the fast training group. Conclusions. The reduction in trial-to-trial variability without an alteration to endpoint bias suggests that improvements are achieved by better control over motor commands within the existing repertoire. Thus, 4 days’ training allows stroke survivors to improve movements that they can already make. Whether new movement patterns can be acquired in the chronic phase will need to be tested in longer term studies. We recommend that training needs to be performed at slow and fast movement speeds to enhance generalization.


2005 ◽  
Vol 32 (S 4) ◽  
Author(s):  
A.R Luft ◽  
L Forrester ◽  
F Villagra ◽  
R Macko ◽  
D.F Hanley

Author(s):  
Michael Houston ◽  
Xiaoyan Li ◽  
Ping Zhou ◽  
Sheng Lia ◽  
Jinsook Roh ◽  
...  

2015 ◽  
Vol 48 (2) ◽  
pp. 383-387 ◽  
Author(s):  
Na Jin Seo ◽  
Leah R. Enders ◽  
Binal Motawar ◽  
Marcella L. Kosmopoulos ◽  
Mojtaba Fathi-Firoozabad

2011 ◽  
Vol 105 (5) ◽  
pp. 2132-2149 ◽  
Author(s):  
Anindo Roy ◽  
Hermano I. Krebs ◽  
Christopher T. Bever ◽  
Larry W. Forrester ◽  
Richard F. Macko ◽  
...  

Our objective in this study was to assess passive mechanical stiffness in the ankle of chronic hemiparetic stroke survivors and to compare it with those of healthy young and older (age-matched) individuals. Given the importance of the ankle during locomotion, an accurate estimate of passive ankle stiffness would be valuable for locomotor rehabilitation, potentially providing a measure of recovery and a quantitative basis to design treatment protocols. Using a novel ankle robot, we characterized passive ankle stiffness both in sagittal and in frontal planes by applying perturbations to the ankle joint over the entire range of motion with subjects in a relaxed state. We found that passive stiffness of the affected ankle joint was significantly higher in chronic stroke survivors than in healthy adults of a similar cohort, both in the sagittal as well as frontal plane of movement, in three out of four directions tested with indistinguishable stiffness values in plantarflexion direction. Our findings are comparable to the literature, thus indicating its plausibility, and, to our knowledge, report for the first time passive stiffness in the frontal plane for persons with chronic stroke and older healthy adults.


Sign in / Sign up

Export Citation Format

Share Document