brain activation
Recently Published Documents


TOTAL DOCUMENTS

2645
(FIVE YEARS 423)

H-INDEX

123
(FIVE YEARS 7)

2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Dazhi Cheng ◽  
Mengyi Li ◽  
Jiaxin Cui ◽  
Li Wang ◽  
Naiyi Wang ◽  
...  

Abstract Background Mathematical expressions mainly include arithmetic (such as 8 − (1 + 3)) and algebra (such as a − (b + c)). Previous studies have shown that both algebraic processing and arithmetic involved the bilateral parietal brain regions. Although previous studies have revealed that algebra was dissociated from arithmetic, the neural bases of the dissociation between algebraic processing and arithmetic is still unclear. The present study uses functional magnetic resonance imaging (fMRI) to identify the specific brain networks for algebraic and arithmetic processing. Methods Using fMRI, this study scanned 30 undergraduates and directly compared the brain activation during algebra and arithmetic. Brain activations, single-trial (item-wise) interindividual correlation and mean-trial interindividual correlation related to algebra processing were compared with those related to arithmetic. The functional connectivity was analyzed by a seed-based region of interest (ROI)-to-ROI analysis. Results Brain activation analyses showed that algebra elicited greater activation in the angular gyrus and arithmetic elicited greater activation in the bilateral supplementary motor area, left insula, and left inferior parietal lobule. Interindividual single-trial brain-behavior correlation revealed significant brain-behavior correlations in the semantic network, including the middle temporal gyri, inferior frontal gyri, dorsomedial prefrontal cortices, and left angular gyrus, for algebra. For arithmetic, the significant brain-behavior correlations were located in the phonological network, including the precentral gyrus and supplementary motor area, and in the visuospatial network, including the bilateral superior parietal lobules. For algebra, significant positive functional connectivity was observed between the visuospatial network and semantic network, whereas for arithmetic, significant positive functional connectivity was observed only between the visuospatial network and phonological network. Conclusion These findings suggest that algebra relies on the semantic network and conversely, arithmetic relies on the phonological and visuospatial networks.


2022 ◽  
Vol 17 (5) ◽  
pp. 1059
Author(s):  
ChaeHa Yang ◽  
MiYoung Lee ◽  
HyeokGyu Kwon ◽  
SeongHun Choi ◽  
JoonHo Seo

2021 ◽  
Vol 15 ◽  
Author(s):  
Zhenglong Lin ◽  
Gangqiang Hou ◽  
Youli Yao ◽  
Zhifeng Zhou ◽  
Feiqi Zhu ◽  
...  

Research on light modulation has typically examined the wavelength, intensity, and exposure time of light, and measured rhythm, sleep, and cognitive ability to evaluate the regulatory effects of light variables on physiological and cognitive functions. Although the frequency of light is one of the main dimensions of light, few studies have attempted to manipulate it to test the effect on brain activation and performance. Recently, 40-Hz light stimulation has been proven to significantly alleviate deficits in gamma oscillation of the hippocampus caused by Alzheimer’s disease. Although this oscillation is one of the key functional characteristics of performing memory tasks in healthy people, there is no evidence that 40-Hz blue light exposure can effectively regulate brain activities related to complex cognitive tasks. In the current study, we examined the difference in the effects of 40-Hz light or 0-Hz light exposure on brain activation and functional connectivity during a recognition memory task. Through joint augmentation of visual area activation, 40-Hz light enhanced brain areas mostly in the limbic system that are related to memory, such as the hippocampus and thalamus. Conversely, 0-Hz light enhanced brain areas mostly in the prefrontal cortex. Additionally, functional connection analysis, with the hippocampus as the seed point, showed that 40-Hz light enhanced connection with the superior parietal lobe and reduced the connection with the default network. These results indicate that light at a frequency of 40 Hz can change the activity and functional connection of memory-related core brain areas. They also indicate that in the use of light to regulate cognitive functions, its frequency characteristics merit attention.


2021 ◽  
Vol 2 ◽  
Author(s):  
Kaleb Vinehout ◽  
Kelsey Tynes ◽  
Miguel R. Sotelo ◽  
Allison S. Hyngstrom ◽  
John R. McGuire ◽  
...  

Background: Botulinum NeuroToxin-A (BoNT-A) relieves muscle spasticity and increases range of motion necessary for stroke rehabilitation. Determining the effects of BoNT-A therapy on brain neuroplasticity could help physicians customize its use and predict its outcome.Objective: The purpose of this study was to investigate the effects of Botulinum Toxin-A therapy for treatment of focal spasticity on brain activation and functional connectivity.Design: We used functional Magnetic Resonance Imaging (fMRI) to track changes in blood oxygen-level dependent (BOLD) activation and functional connectivity associated with BoNT-A therapy in nine chronic stroke participants, and eight age-matched controls. Scans were acquired before BoNT-A injections (W0) and 6 weeks after the injections (W6). The task fMRI scan consisted of a block design of alternating mass finger flexion and extension. The voxel-level changes in BOLD activation, and pairwise changes in functional connectivity were analyzed for BoNT-A treatment (stroke W0 vs. W6).Results: BoNT-A injection therapy resulted in significant increases in brain activation in the contralesional premotor cortex, cingulate gyrus, thalamus, superior cerebellum, and in the ipsilesional sensory integration area. Lastly, cerebellar connectivity correlated with the Fugl-Meyer assessment of motor impairment before injection, while premotor connectivity correlated with the Fugl-Meyer score after injection.Conclusion: BoNT-A therapy for treatment of focal spasticity resulted in increased brain activation in areas associated with motor control, and cerebellar connectivity correlated with motor impairment before injection. These results suggest that neuroplastic effects might take place in response to improvements in focal spasticity.


Fractals ◽  
2021 ◽  
Author(s):  
JANARTHANAN RAMADOSS ◽  
NORAZRYANA MAT DAWI ◽  
KARTHIKEYAN RAJAGOPAL ◽  
HAMIDREZA NAMAZI

In this paper, we analyzed the variations in brain activation between different activities. Since Electroencephalogram (EEG) signals as an indicator of brain activation contain information and have complex structures, we employed complexity and information-based analysis. Specifically, we used fractal theory and Shannon entropy for our analysis. Eight subjects performed three different activities (standing, walking, and walking with a brain–computer interface) while their EEG signals were recorded. Based on the results, the complexity and information content of EEG signals have the greatest and smallest values in walking and standing, respectively. Complexity and information-based analysis can be applied to analyze the activations of other organs in different conditions.


Author(s):  
Yan Shao ◽  
Guangyuan Zou ◽  
Serik Tabarak ◽  
Jie Chen ◽  
Xuejiao Gao ◽  
...  

2021 ◽  
Vol 17 (S1) ◽  
Author(s):  
Shannon L. Risacher ◽  
Rachael Deardorff ◽  
John D. West ◽  
Aaron Vosmeier ◽  
Eileen F. Tallman ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Noriko Sakurai ◽  
Ken Ohno ◽  
Satoshi Kasai ◽  
Kazuaki Nagasaka ◽  
Hideaki Onishi ◽  
...  

Background: Autonomous sensory meridian response (ASMR) is used by young people to induce relaxation and sleep and to reduce stress and anxiety; it comprises somatosensation caused by audiovisual stimuli (triggers) that lead to positive emotions. Auditory stimuli play the most important role among the triggers involved in ASMR and have been reported to be more triggering than visual stimuli. On the other hand, classical music is also known to have a relaxing effect. This is the first study to clarify the difference in brain activation associated with relaxation effects between ASMR and classical music by limiting ASMR to auditory stimulation alone.Methods: Thirty healthy subjects, all over 20 years of age, underwent fMRI while listening to ASMR and classical music. We compared the differences in brain activation associated with classical music and ASMR stimulation. After the experiment, the subjects were administered a questionnaire on somatosensation and moods. After the experiment, the participants were asked whether they experienced ASMR somatosensation or frisson. They were also asked to rate the intensity of two moods during stimulation: “comfortable mood,” and “tingling mood”.Result: The results of the questionnaire showed that none of the participants experienced any ASMR somatosensation or frisson. Further, there was no significant difference in the ratings given to comfort mood, but there was a significant difference in those given to tingling mood. In terms of brain function, classical music and ASMR showed significant activation in common areas, while ASMR showed activation in more areas, with the medial prefrontal cortex being the main area of activation during ASMR.Conclusion: Both classical music and the ASMR auditory stimulus produced a pleasant and relaxed state, and ASMR involved more complex brain functions than classical music, especially the activation of the medial prefrontal cortex. Although ASMR was limited to auditory stimulation, the effects were similar to those of listening to classical music, suggesting that ASMR stimulation can produce a pleasant state of relaxation even if it is limited to the auditory component, without the somatic sensation of tingling. ASMR stimulation is easy to use, and appropriate for wellness purposes and a wide range of people.


Sign in / Sign up

Export Citation Format

Share Document