ankle stiffness
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 38)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Vol 3 ◽  
Author(s):  
Paige E. Rice ◽  
Kiisa Nishikawa ◽  
Sophia Nimphius

The purpose of this study was to investigate the effect of a 12-week ankle-specific block progression training program on saut de chat leaping performance [leap height, peak power (PP), joint kinetics and kinematics], maximal voluntary isometric plantar flexion (MVIP) strength, and Achilles tendon (AT) stiffness. Dancers (training group n = 7, control group n = 7) performed MVIP at plantarflexed (10◦) and neutral ankle positions (0◦) followed by ramping isometric contractions equipped with ultrasound to assess strength and AT stiffness, respectively. Dancers also performed saut de chat leaps surrounded by 3-D motion capture atop force platforms to determine center of mass and joint kinematics and kinetics. The training group then followed a 12-week ankle-focused program including isometric, dynamic constant external resistance, accentuated eccentric loading, and plyometric training modalities, while the control group continued dancing normally. We found that the training group's saut de chat ankle PP (59.8%), braking ankle stiffness (69.6%), center of mass PP (11.4%), and leap height (12.1%) significantly increased following training. We further found that the training group's MVIP significantly increased at 10◦ (17.0%) and 0◦ (12.2%) along with AT stiffness (29.6%), while aesthetic leaping measures were unchanged (peak split angle, mean trunk angle, trunk angle range). Ankle-specific block progression training appears to benefit saut de chat leaping performance, PP output, ankle-joint kinetics, maximal strength, and AT stiffness, while not affecting kinematic aesthetic measures. We speculate that the combined training blocks elicited physiological changes and enhanced neuromuscular synchronization for increased saut de chat leaping performance in this cohort of dancers.


2021 ◽  
Author(s):  
Zoe Villamar ◽  
Eric J. Perreault ◽  
Daniel Ludvig

ABSTRACTAnkle sprains are the most common musculoskeletal injury, typically resulting from excessive inversion of the ankle. One way to prevent excessive inversion and maintain ankle stability is to generate a stiffness that is sufficient to resist externally imposed rotations. Frontal-plane ankle stiffness increases as participants place more weight on their ankle, but whether this effect is due to muscle activation or axial loading of the ankle is unknown. Identifying whether and to what extent axial loading affects ankle stiffness is important in understanding what role the passive mechanics of the ankle joint play in maintaining its stability. The objective of this study was to determine the effect of passive axial load on frontal-plane ankle stiffness. We had subjects seated in a chair as an axial load was applied to the ankle ranging from 10% to 50% body weight. Small rotational perturbations were applied to the ankle in the frontal plane to estimate stiffness. We found a significant, linear, 3-fold increase in ankle stiffness with axial load from the range of 0% bodyweight to 50% bodyweight. This increase could not be due to muscle activity as we observed no significant axial-load-dependent change in any of the recorded muscle activations. These results demonstrate that axial loading is a significant contributor to maintaining frontal-plane ankle stability, and that disruptions to the mechanism mediating this sensitivity of stiffness to axial loading may result in pathological cases of ankle instability.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoxue Zhai ◽  
Qiong Wu ◽  
Xin Li ◽  
Quan Xu ◽  
Yanlin Zhang ◽  
...  

Background: Stroke survivors with impaired control of the ankle due to stiff plantarflexors often experience abnormal posture control, which affects balance and locomotion. Forceful stretching may decrease ankle stiffness and improve balance. Recently, a robot-aided stretching device was developed to decrease ankle stiffness of patient post-stroke, however, their benefits compared to manual stretching exercises have not been done in a randomized controlled trial, and the correlations between the ankle joint biomechanical properties and balance are unclear.Objective: To compare the effects of robot-aided to manual ankle stretching training in stroke survivors with the spastic ankle on the ankle joint properties and balance function post-stroke, and further explore the correlations between the ankle stiffness and balance.Methods: Twenty inpatients post-stroke with ankle spasticity received 20 minutes of stretching training daily over two weeks. The experimental group used a robot-aided stretching device, and the control group received manual stretching. Outcome measures were evaluated before and after training. The primary outcome measure was ankle stiffness. The secondary outcome measures were passive dorsiflexion ranges of motion, dorsiflexor muscle strength, Modified Ashworth Scale (MAS), Fugl-Meyer Motor Assessment of Lower Extremity (FMA-LE), Berg Balance Scale (BBS), Modified Barthel Index (MBI), and the Pro-Kin balance test.Results: After training, two groups showed significantly within-group improvements in dorsiflexor muscle strength, FMA-LE, BBS, MBI (P < 0.05). The between-group comparison showed no significant differences in all outcome measures (P > 0.0025). The experimental group significantly improved in the stiffness and passive range of motion of dorsiflexion, MAS. In the Pro-Kin test, the experimental group improved significantly with eyes closed and open (P < 0.05), but significant improvements were found in the control group only with eyes open (P < 0.05). Dorsiflexion stiffness was positively correlated with the Pro-Kin test results with eyes open and the MAS (P < 0.05).Conclusions: The robot-aided and manual ankle stretching training provided similar significant improvements in the ankle properties and balance post-stroke. However, only the robot-aided stretching training improved spasticity and stiffness of dorsiflexion significantly. Ankle dorsiflexion stiffness was correlated with balance function.Clinical Trial Registration:www.chictr.org.cn ChiCTR2000030108.


Author(s):  
Kaifan Xie ◽  
Yueling Lyu ◽  
Xianyi Zhang ◽  
Rong Song

Humans can regulate ankle moment and stiffness to cope with various surfaces during walking, while the effect of surfaces compliance on ankle moment and stiffness regulations remains unclear. In order to find the underlying mechanism, ten healthy subjects were recruited to walk across surfaces with different levels of compliance. Electromyography (EMG), ground reaction forces (GRFs), and three-dimensional reflective marker trajectories were recorded synchronously. Ankle moment and stiffness were estimated using an EMG-driven musculoskeletal model. Our results showed that the compliance of surfaces can affect both ankle moment and stiffness regulations during walking. When the compliance of surfaces increased, the ankle moment increased to prevent lower limb collapse and the ankle stiffness increased to maintain stability during the mid-stance phase of gait. Our work improved the understanding of gait biomechanics and might be instructive to sports surface design and passive multibody model development.


2021 ◽  
pp. 501-505
Author(s):  
Varun Nalam ◽  
Ermyntrude Adjei ◽  
Joshua Russell ◽  
Megan C. Eikenberry ◽  
Dean Wingerchuk ◽  
...  

Author(s):  
Tyler R. Clites ◽  
Max K. Shepherd ◽  
Kimberly A. Ingraham ◽  
Leslie Wontorcik ◽  
Elliott J. Rouse

Abstract Background User preference has the potential to facilitate the design, control, and prescription of prostheses, but we do not yet understand which physiological factors drive preference, or if preference is associated with clinical benefits. Methods Subjects with unilateral below-knee amputation walked on a custom variable-stiffness prosthetic ankle and manipulated a dial to determine their preferred prosthetic ankle stiffness at three walking speeds. We evaluated anthropomorphic, metabolic, biomechanical, and performance-based descriptors at stiffness levels surrounding each subject’s preferred stiffness. Results Subjects preferred lower stiffness values at their self-selected treadmill walking speed, and elected to walk faster overground with ankle stiffness at or above their preferred stiffness. Preferred stiffness maximized the kinematic symmetry between prosthetic and unaffected joints, but was not significantly correlated with body mass or metabolic rate. Conclusion These results imply that some physiological factors are weighted more heavily when determining preferred stiffness, and that preference may be associated with clinically relevant improvements in gait.


2021 ◽  
pp. 110565
Author(s):  
Marie Matos ◽  
Eric J. Perreault ◽  
Daniel Ludvig

Author(s):  
Stacy R. Loushin ◽  
Krista A. Coleman Wood ◽  
Kenton R. Kaufman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document