Postural Control Underlying Head Movements While Tracking Visual Targets

Motor Control ◽  
2019 ◽  
Vol 23 (3) ◽  
pp. 365-383 ◽  
Author(s):  
Pedro Paulo Deprá ◽  
Avelino Amado ◽  
Richard E.A. van Emmerik
2007 ◽  
Vol 29 (3) ◽  
pp. 205-212
Author(s):  
Junko Fukushima ◽  
Tadayoshi Asaka ◽  
Natsumi Ikeda ◽  
Yumi Ito

2005 ◽  
Vol 93 (3) ◽  
pp. 1223-1234 ◽  
Author(s):  
Daniel J. Tollin ◽  
Luis C. Populin ◽  
Jordan M. Moore ◽  
Janet L. Ruhland ◽  
Tom C. T. Yin

In oculomotor research, there are two common methods by which the apparent location of visual and/or auditory targets are measured, saccadic eye movements with the head restrained and gaze shifts (combined saccades and head movements) with the head unrestrained. Because cats have a small oculomotor range (approximately ±25°), head movements are necessary when orienting to targets at the extremes of or outside this range. Here we tested the hypothesis that the accuracy of localizing auditory and visual targets using more ethologically natural head-unrestrained gaze shifts would be superior to head-restrained eye saccades. The effect of stimulus duration on localization accuracy was also investigated. Three cats were trained using operant conditioning with their heads initially restrained to indicate the location of auditory and visual targets via eye position. Long-duration visual targets were localized accurately with little error, but the locations of short-duration visual and both long- and short-duration auditory targets were markedly underestimated. With the head unrestrained, localization accuracy improved substantially for all stimuli and all durations. While the improvement for long-duration stimuli with the head unrestrained might be expected given that dynamic sensory cues were available during the gaze shifts and the lack of a memory component, surprisingly, the improvement was greatest for the auditory and visual stimuli with the shortest durations, where the stimuli were extinguished prior to the onset of the eye or head movement. The underestimation of auditory targets with the head restrained is explained in terms of the unnatural sensorimotor conditions that likely result during head restraint.


1999 ◽  
Vol 81 (6) ◽  
pp. 3105-3109 ◽  
Author(s):  
T. Belton ◽  
R. A. McCrea

Contribution of the cerebellar flocculus to gaze control during active head movements. The flocculus and ventral paraflocculus are adjacent regions of the cerebellar cortex that are essential for controlling smooth pursuit eye movements and for altering the performance of the vestibulo-ocular reflex (VOR). The question addressed in this study is whether these regions of the cerebellum are more globally involved in controlling gaze, regardless of whether eye or active head movements are used to pursue moving visual targets. Single-unit recordings were obtained from Purkinje (Pk) cells in the floccular region of squirrel monkeys that were trained to fixate and pursue small visual targets. Cell firing rate was recorded during smooth pursuit eye movements, cancellation of the VOR, combined eye-head pursuit, and spontaneous gaze shifts in the absence of targets. Pk cells were found to be much less sensitive to gaze velocity during combined eye–head pursuit than during ocular pursuit. They were not sensitive to gaze or head velocity during gaze saccades. Temporary inactivation of the floccular region by muscimol injection compromised ocular pursuit but had little effect on the ability of monkeys to pursue visual targets with head movements or to cancel the VOR during active head movements. Thus the signals produced by Pk cells in the floccular region are necessary for controlling smooth pursuit eye movements but not for coordinating gaze during active head movements. The results imply that individual functional modules in the cerebellar cortex are less involved in the global organization and coordination of movements than with parametric control of movements produced by a specific part of the body.


2011 ◽  
Vol 106 (4) ◽  
pp. 2000-2011 ◽  
Author(s):  
Luis C. Populin ◽  
Abigail Z. Rajala

We have studied eye-head coordination in nonhuman primates with acoustic targets after finding that they are unable to make accurate saccadic eye movements to targets of this type with the head restrained. Three male macaque monkeys with experience in localizing sounds for rewards by pointing their gaze to the perceived location of sources served as subjects. Visual targets were used as controls. The experimental sessions were configured to minimize the chances that the subject would be able to predict the modality of the target as well as its location and time of presentation. The data show that eye and head movements are coordinated differently to generate gaze shifts to acoustic targets. Chiefly, the head invariably started to move before the eye and contributed more to the gaze shift. These differences were more striking for gaze shifts of <20–25° in amplitude, to which the head contributes very little or not at all when the target is visual. Thus acoustic and visual targets trigger gaze shifts with different eye-head coordination. This, coupled to the fact that anatomic evidence involves the superior colliculus as the link between auditory spatial processing and the motor system, suggests that separate signals are likely generated within this midbrain structure.


2007 ◽  
Vol 19 (3) ◽  
pp. 205-212 ◽  
Author(s):  
Junko Fukushima ◽  
Tadayoshi Asaka ◽  
Natsumi Ikeda ◽  
Yumi Ito

2012 ◽  
Vol 31 (6) ◽  
pp. 1541-1551 ◽  
Author(s):  
Cédrick T. Bonnet ◽  
Pascal Despretz

1999 ◽  
Vol 58 (3) ◽  
pp. 170-179 ◽  
Author(s):  
Barbara S. Muller ◽  
Pierre Bovet

Twelve blindfolded subjects localized two different pure tones, randomly played by eight sound sources in the horizontal plane. Either subjects could get information supplied by their pinnae (external ear) and their head movements or not. We found that pinnae, as well as head movements, had a marked influence on auditory localization performance with this type of sound. Effects of pinnae and head movements seemed to be additive; the absence of one or the other factor provoked the same loss of localization accuracy and even much the same error pattern. Head movement analysis showed that subjects turn their face towards the emitting sound source, except for sources exactly in the front or exactly in the rear, which are identified by turning the head to both sides. The head movement amplitude increased smoothly as the sound source moved from the anterior to the posterior quadrant.


Author(s):  
Sander Martens ◽  
Addie Johnson ◽  
Martje Bolle ◽  
Jelmer Borst

The human mind is severely limited in processing concurrent information at a conscious level of awareness. These temporal restrictions are clearly reflected in the attentional blink (AB), a deficit in reporting the second of two targets when it occurs 200–500 ms after the first. However, we recently reported that some individuals do not show a visual AB, and presented psychophysiological evidence that target processing differs between “blinkers” and “nonblinkers”. Here, we present evidence that visual nonblinkers do show an auditory AB, which suggests that a major source of attentional restriction as reflected in the AB is likely to be modality-specific. In Experiment 3, we show that when the difficulty in identifying visual targets is increased, nonblinkers continue to show little or no visual AB, suggesting that the presence of an AB in the auditory but not in the visual modality is not due to a difference in task difficulty.


Sign in / Sign up

Export Citation Format

Share Document