Postural Control during Downward Head Movements in Young Subjects

2007 ◽  
Vol 29 (3) ◽  
pp. 205-212
Author(s):  
Junko Fukushima ◽  
Tadayoshi Asaka ◽  
Natsumi Ikeda ◽  
Yumi Ito
2007 ◽  
Vol 19 (3) ◽  
pp. 205-212 ◽  
Author(s):  
Junko Fukushima ◽  
Tadayoshi Asaka ◽  
Natsumi Ikeda ◽  
Yumi Ito

1993 ◽  
Vol 102 (7) ◽  
pp. 508-517 ◽  
Author(s):  
Neil T. Shepard ◽  
Albert Schultz ◽  
Mian Ju Gu ◽  
Neil B. Alexander ◽  
Thomas Boismier

The use of dynamic posturography (EquiTest) for the characterization of postural control biomechanics would be aided by specific knowledge of what the measured data imply about body segment movements. To investigate this issue, the biomechanics of a group of 15 healthy elderly subjects were compared to those of healthy young subjects by using both dynamic posturography and a laboratory movement and force measuring system. The results from EquiTest were analyzed by 1) routine clinical interpretation of data and 2) a clinical research interpretation by subjecting the EquiTest parameters to additional statistical comparison of mean performance of the young and elderly groups. The young-elderly differences from the 2 EquiTest analyses were then compared to the young-elderly differences derived from the laboratory protocol. The routine clinical interpretation of EquiTest data identified the same increases in sway shown by the laboratory study, but did not reveal the more subtle differences indicated by the laboratory study. When the EquiTest data were subjected to additional statistical analysis, the characterization of difference between young and elderly subjects was the same as that of the laboratory study, with the exception of issues of head versus trunk movement, a measure not made by EquiTest. This essential similarity in the characterization of elderly compared to young subjects by both systems suggests 1) that EquiTest is able to detect subtle differences in biomechanics of postural control between young and elderly healthy adult groups and 2) that implied movements of center of gravity, trunk versus lower limbs, and strength of reaction measures are consistently detected by both EquiTest and the laboratory kinematics and dynamics measurement systems.


2005 ◽  
Vol 12 (2-3) ◽  
pp. 109-118 ◽  
Author(s):  
Christine Assaiante ◽  
Sophie Mallau ◽  
Sébastien Viel ◽  
Marianne Jover ◽  
Christina Schmitz

From a set of experimental studies showing how intersegmental coordination develops during childhood in various posturokinetic tasks, we have established a repertoire of equilibrium strategies in the course of ontogenesis. The experimental data demonstrate that the first reference frame used for the organization of balance control during locomotion is the pelvis, especially in young children. Head stabilization during posturokinetic activities, particularly locomotion, constitutes a complex motor skill requiring a long time to develop during childhood. When studying the emergence of postural strategies, it is essential to distinguish between results that can be explained by biomechanical reasons strictly and those reflecting the maturation of the central nervous system (CNS). To address this problem, we have studied our young subjects in situations requiring various types of adaptation. The studies dealing with adaptation of postural strategies aimed at testing short and long-term adaptation capacity of the CNS during imposed transient external biomechanical constraints in healthy children, and during chronic internal constraints in children with skeletal pathologies. In addition to maintenance of balance, another function of posture is to ensure the orientation of a body segment. It appears that the control of orientation and the control of balance both require the trunk as an initial reference frame involving a development from egocentric to exocentric postural control. It is concluded that the first step for children consists in building a repertoire of postural strategies, and the second step consists in learning to select the most appropriate postural strategy, depending on the ability to anticipate the consequence of the movement in order to maintain balance control and the efficiency of the task.


Motor Control ◽  
2019 ◽  
Vol 23 (3) ◽  
pp. 365-383 ◽  
Author(s):  
Pedro Paulo Deprá ◽  
Avelino Amado ◽  
Richard E.A. van Emmerik

2012 ◽  
Vol 31 (6) ◽  
pp. 1541-1551 ◽  
Author(s):  
Cédrick T. Bonnet ◽  
Pascal Despretz

1999 ◽  
Vol 58 (3) ◽  
pp. 170-179 ◽  
Author(s):  
Barbara S. Muller ◽  
Pierre Bovet

Twelve blindfolded subjects localized two different pure tones, randomly played by eight sound sources in the horizontal plane. Either subjects could get information supplied by their pinnae (external ear) and their head movements or not. We found that pinnae, as well as head movements, had a marked influence on auditory localization performance with this type of sound. Effects of pinnae and head movements seemed to be additive; the absence of one or the other factor provoked the same loss of localization accuracy and even much the same error pattern. Head movement analysis showed that subjects turn their face towards the emitting sound source, except for sources exactly in the front or exactly in the rear, which are identified by turning the head to both sides. The head movement amplitude increased smoothly as the sound source moved from the anterior to the posterior quadrant.


2005 ◽  
Author(s):  
Navrag B. Singh ◽  
Maury A. Nussbaum ◽  
Dingding Lin ◽  
Michael L. Madigan

Sign in / Sign up

Export Citation Format

Share Document