Sound-Localization Performance in the Cat: The Effect of Restraining the Head

2005 ◽  
Vol 93 (3) ◽  
pp. 1223-1234 ◽  
Author(s):  
Daniel J. Tollin ◽  
Luis C. Populin ◽  
Jordan M. Moore ◽  
Janet L. Ruhland ◽  
Tom C. T. Yin

In oculomotor research, there are two common methods by which the apparent location of visual and/or auditory targets are measured, saccadic eye movements with the head restrained and gaze shifts (combined saccades and head movements) with the head unrestrained. Because cats have a small oculomotor range (approximately ±25°), head movements are necessary when orienting to targets at the extremes of or outside this range. Here we tested the hypothesis that the accuracy of localizing auditory and visual targets using more ethologically natural head-unrestrained gaze shifts would be superior to head-restrained eye saccades. The effect of stimulus duration on localization accuracy was also investigated. Three cats were trained using operant conditioning with their heads initially restrained to indicate the location of auditory and visual targets via eye position. Long-duration visual targets were localized accurately with little error, but the locations of short-duration visual and both long- and short-duration auditory targets were markedly underestimated. With the head unrestrained, localization accuracy improved substantially for all stimuli and all durations. While the improvement for long-duration stimuli with the head unrestrained might be expected given that dynamic sensory cues were available during the gaze shifts and the lack of a memory component, surprisingly, the improvement was greatest for the auditory and visual stimuli with the shortest durations, where the stimuli were extinguished prior to the onset of the eye or head movement. The underestimation of auditory targets with the head restrained is explained in terms of the unnatural sensorimotor conditions that likely result during head restraint.

2011 ◽  
Vol 106 (4) ◽  
pp. 2000-2011 ◽  
Author(s):  
Luis C. Populin ◽  
Abigail Z. Rajala

We have studied eye-head coordination in nonhuman primates with acoustic targets after finding that they are unable to make accurate saccadic eye movements to targets of this type with the head restrained. Three male macaque monkeys with experience in localizing sounds for rewards by pointing their gaze to the perceived location of sources served as subjects. Visual targets were used as controls. The experimental sessions were configured to minimize the chances that the subject would be able to predict the modality of the target as well as its location and time of presentation. The data show that eye and head movements are coordinated differently to generate gaze shifts to acoustic targets. Chiefly, the head invariably started to move before the eye and contributed more to the gaze shift. These differences were more striking for gaze shifts of <20–25° in amplitude, to which the head contributes very little or not at all when the target is visual. Thus acoustic and visual targets trigger gaze shifts with different eye-head coordination. This, coupled to the fact that anatomic evidence involves the superior colliculus as the link between auditory spatial processing and the motor system, suggests that separate signals are likely generated within this midbrain structure.


2007 ◽  
Vol 98 (2) ◽  
pp. 696-709 ◽  
Author(s):  
A. G. Constantin ◽  
H. Wang ◽  
J. C. Martinez-Trujillo ◽  
J. D. Crawford

Previous studies suggest that stimulation of lateral intraparietal cortex (LIP) evokes saccadic eye movements toward eye- or head-fixed goals, whereas most single-unit studies suggest that LIP uses an eye-fixed frame with eye-position modulations. The goal of our study was to determine the reference frame for gaze shifts evoked during LIP stimulation in head-unrestrained monkeys. Two macaques ( M1 and M2) were implanted with recording chambers over the right intraparietal sulcus and with search coils for recording three-dimensional eye and head movements. The LIP region was microstimulated using pulse trains of 300 Hz, 100–150 μA, and 200 ms. Eighty-five putative LIP sites in M1 and 194 putative sites in M2 were used in our quantitative analysis throughout this study. Average amplitude of the stimulation-evoked gaze shifts was 8.67° for M1 and 7.97° for M2 with very small head movements. When these gaze-shift trajectories were rotated into three coordinate frames (eye, head, and body), gaze endpoint distribution for all sites was most convergent to a common point when plotted in eye coordinates. Across all sites, the eye-centered model provided a significantly better fit compared with the head, body, or fixed-vector models (where the latter model signifies no modulation of the gaze trajectory as a function of initial gaze position). Moreover, the probability of evoking a gaze shift from any one particular position was modulated by the current gaze direction (independent of saccade direction). These results provide causal evidence that the motor commands from LIP encode gaze command in eye-fixed coordinates but are also subtly modulated by initial gaze position.


1992 ◽  
Vol 68 (4) ◽  
pp. 1248-1260 ◽  
Author(s):  
J. S. Maxwell ◽  
W. M. King

1. Four macaque monkeys were trained to fixate visual targets. Eye movements were recorded binocularly using the search coil technique. Saccades, vergence movements, and combinations of the two were elicited by training the monkeys to alternate the gaze between real visual targets that differed in viewing distance and eccentricity with respect to the monkeys' heads. 2. When they shifted the gaze between targets that were at different viewing distances, the monkeys made vergence eye movements. For targets placed along the midsagittal plane, the monkeys often made binocularly symmetric vergence movements. The peak speed of symmetric divergence movements increased linearly with vergence amplitude by 5.7 deg/s per degree of vergence. The peak speed of symmetric convergence movements increased linearly with vergence amplitude by 7.9 deg/s per degree of vergence. 3. For gaze shifts between targets placed eccentrically with respect to the midsagittal plane and at different viewing distances, the monkeys made saccades in combination with vergence eye movements. When a saccade occurred during a vergence movement, peak vergence eye speed increased abruptly and reached a peak that was proportional to the speed of the saccade. For four monkeys, peak divergence speed ranged from 242 to 315 deg/s and peak convergence speed ranged from 257 to 340 deg/s for 16-deg vergence and 20-deg saccadic eye movements. 4. For gaze shifts between far targets at the same viewing distance but different eccentricities, saccadic eye movements were transiently disjunctive even though there was no vergence requirement. Initially, the eyes diverged and then converged to restore fixation to the correct depth plane. Divergence was followed by convergence regardless of the direction of the saccade. 5. The presence of transient saccade-related disjunctive eye movements suggested that the abrupt increase in peak vergence speed during combined saccadic and vergence eye movements was produced by the linear addition of a vergence eye movement and the saccade-related transients. Consistent with this hypothesis, the rate of change in peak vergence speed during various-sized saccades between far targets (no vergence required) was similar to the rate of change in peak vergence speed during combined saccadic and vergence movements. However, the peak vergence speeds during the combined movements were higher than predicted by the linear addition hypothesis, suggesting the presence of an additional mechanism. 6. The saccade-related increase in peak vergence speed during combined saccades and vergences led to a significant decrease in the amount of time required to complete vergence movements.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 58 (3) ◽  
pp. 170-179 ◽  
Author(s):  
Barbara S. Muller ◽  
Pierre Bovet

Twelve blindfolded subjects localized two different pure tones, randomly played by eight sound sources in the horizontal plane. Either subjects could get information supplied by their pinnae (external ear) and their head movements or not. We found that pinnae, as well as head movements, had a marked influence on auditory localization performance with this type of sound. Effects of pinnae and head movements seemed to be additive; the absence of one or the other factor provoked the same loss of localization accuracy and even much the same error pattern. Head movement analysis showed that subjects turn their face towards the emitting sound source, except for sources exactly in the front or exactly in the rear, which are identified by turning the head to both sides. The head movement amplitude increased smoothly as the sound source moved from the anterior to the posterior quadrant.


2008 ◽  
Vol 100 (4) ◽  
pp. 1848-1867 ◽  
Author(s):  
Sigrid M. C. I. van Wetter ◽  
A. John van Opstal

Such perisaccadic mislocalization is maximal in the direction of the saccade and varies systematically with the target-saccade onset delay. We have recently shown that under head-fixed conditions perisaccadic errors do not follow the quantitative predictions of current visuomotor models that explain these mislocalizations in terms of spatial updating. These models all assume sluggish eye-movement feedback and therefore predict that errors should vary systematically with the amplitude and kinematics of the intervening saccade. Instead, we reported that errors depend only weakly on the saccade amplitude. An alternative explanation for the data is that around the saccade the perceived target location undergoes a uniform transient shift in the saccade direction, but that the oculomotor feedback is, on average, accurate. This “ visual shift” hypothesis predicts that errors will also remain insensitive to kinematic variability within much larger head-free gaze shifts. Here we test this prediction by presenting a brief visual probe near the onset of gaze saccades between 40 and 70° amplitude. According to models with inaccurate gaze-motor feedback, the expected perisaccadic errors for such gaze shifts should be as large as 30° and depend heavily on the kinematics of the gaze shift. In contrast, we found that the actual peak errors were similar to those reported for much smaller saccadic eye movements, i.e., on average about 10°, and that neither gaze-shift amplitude nor kinematics plays a systematic role. Our data further corroborate the visual origin of perisaccadic mislocalization under open-loop conditions and strengthen the idea that efferent feedback signals in the gaze-control system are fast and accurate.


1995 ◽  
Vol 73 (4) ◽  
pp. 1632-1652 ◽  
Author(s):  
J. O. Phillips ◽  
L. Ling ◽  
A. F. Fuchs ◽  
C. Siebold ◽  
J. J. Plorde

1. We studied horizontal eye and head movements in three monkeys that were trained to direct their gaze (eye position in space) toward jumping targets while their heads were both fixed and free to rotate about a vertical axis. We considered all gaze movements that traveled > or = 80% of the distance to the new visual target. 2. The relative contributions and metrics of eye and head movements to the gaze shift varied considerably from animal to animal and even within animals. Head movements could be initiated early or late and could be large or small. The eye movements of some monkeys showed a consistent decrease in velocity as the head accelerated, whereas others did not. Although all gaze shifts were hypometric, they were more hypometric in some monkeys than in others. Nevertheless, certain features of the gaze shift were identifiable in all monkeys. To identify those we analyzed gaze, eye in head position, and head position, and their velocities at three points in time during the gaze shift: 1) when the eye had completed its initial rotation toward the target, 2) when the initial gaze shift had landed, and 3) when the head movement was finished. 3. For small gaze shifts (< 20 degrees) the initial gaze movement consisted entirely of an eye movement because the head did not move. As gaze shifts became larger, the eye movement contribution saturated at approximately 30 degrees and the head movement contributed increasingly to the initial gaze movement. For the largest gaze shifts, the eye usually began counterrolling or remained stable in the orbit before gaze landed. During the interval between eye and gaze end, the head alone carried gaze to completion. Finally, when the head movement landed, it was almost aimed at the target and the eye had returned to within 10 +/- 7 degrees, mean +/- SD, of straight ahead. Between the end of the gaze shift and the end of the head movement, gaze remained stable in space or a small correction saccade occurred. 4. Gaze movements < 20 degrees landed accurately on target whether the head was fixed or free. For larger target movements, both head-free and head-fixed gaze shifts became increasingly hypometric. Head-free gaze shifts were more accurate, on average, but also more variable. This suggests that gaze is controlled in a different way with the head free. For target amplitudes < 60 degrees, head position was hypometric but the error was rather constant at approximately 10 degrees.(ABSTRACT TRUNCATED AT 400 WORDS)


2004 ◽  
Vol 92 (6) ◽  
pp. 3408-3422 ◽  
Author(s):  
Kathleen E. Cullen ◽  
Marko Huterer ◽  
Danielle A. Braidwood ◽  
Pierre A. Sylvestre

Although numerous investigations have probed the status of the vestibuloocular (VOR) during gaze shifts, its exact status remains strangely elusive. The goal of the present study was to precisely evaluate the dynamics of VOR suppression immediately before, throughout, and just after gaze shifts. A torque motor was used to apply rapid (100°/s), short-duration (20–30 ms) horizontal head perturbations in three Rhesus monkeys. The status of the VOR elicited by this transient head perturbation was first compared during 15, 40, and 60° gaze shifts. The level of VOR suppression just after gaze-shift onset (40 ms) increased with gaze-shift amplitude in two monkeys, approaching values of 80 and 35%. In contrast, in the third monkey, the VOR was not significantly attenuated for all gaze-shift amplitudes. The time course of VOR attenuation was then studied in greater detail for all three monkeys by imposing the same short-duration head perturbations 40, 100, and 150 ms after the onset of 60° gaze shifts. Overall we found a consistent trend, in which VOR suppression was maximal early in the gaze shift and progressively recovered to reach normal values near gaze-shift end. However, the high variability across subjects prevented establishing a unifying description of the absolute level and time course of VOR suppression during gaze shifts. We propose that differences in behavioral strategies may account, at least in part, for these differences between subjects.


2007 ◽  
Vol 98 (1) ◽  
pp. 360-373 ◽  
Author(s):  
Neeraj J. Gandhi ◽  
David L. Sparks

Natural movements often include actions integrated across multiple effectors. Coordinated eye-head movements are driven by a command to shift the line of sight by a desired displacement vector. Yet because extraocular and neck motoneurons are separate entities, the gaze shift command must be separated into independent signals for eye and head movement control. We report that this separation occurs, at least partially, at or before the level of pontine omnipause neurons (OPNs). Stimulation of the OPNs prior to and during gaze shifts temporally decoupled the eye and head components by inhibiting gaze and eye saccades. In contrast, head movements were consistently initiated before gaze onset, and ongoing head movements continued along their trajectories, albeit with some characteristic modulations. After stimulation offset, a gaze shift composed of an eye saccade, and a reaccelerated head movement was produced to preserve gaze accuracy. We conclude that signals subject to OPN inhibition produce the eye-movement component of a coordinated eye-head gaze shift and are not the only signals involved in the generation of the head component of the gaze shift.


1995 ◽  
Vol 73 (2) ◽  
pp. 766-779 ◽  
Author(s):  
D. Tweed ◽  
B. Glenn ◽  
T. Vilis

1. Three-dimensional (3D) eye and head rotations were measured with the use of the magnetic search coil technique in six healthy human subjects as they made large gaze shifts. The aims of this study were 1) to see whether the kinematic rules that constrain eye and head orientations to two degrees of freedom between saccades also hold during movements; 2) to chart the curvature and looping in eye and head trajectories; and 3) to assess whether the timing and paths of eye and head movements are more compatible with a single gaze error command driving both movements, or with two different feedback loops. 2. Static orientations of the eye and head relative to space are known to resemble the distribution that would be generated by a Fick gimbal (a horizontal axis moving on a fixed vertical axis). We show that gaze point trajectories during eye-head gaze shifts fit the Fick gimbal pattern, with horizontal movements following straight "line of latitude" paths and vertical movements curving like lines of longitude. However, horizontal (and to a lesser extent vertical) movements showed direction-dependent looping, with rightward and leftward (and up and down) saccades tracing slightly different paths. Plots of facing direction (the analogue of gaze direction for the head) also showed the latitude/longitude pattern, without looping. In radial saccades, the gaze point initially moved more vertically than the target direction and then curved; head trajectories were straight. 3. The eye and head components of randomly sequenced gaze shifts were not time locked to one another. The head could start moving at any time from slightly before the eye until 200 ms after, and the standard deviation of this interval could be as large as 80 ms. The head continued moving for a long (up to 400 ms) and highly variable time after the gaze error had fallen to zero. For repeated saccades between the same targets, peak eye and head velocities were directly, but very weakly, correlated; fast eye movements could accompany slow head movements and vice versa. Peak head acceleration and deceleration were also very weakly correlated with eye velocity. Further, the head rotated about an essentially fixed axis, with a smooth bell-shaped velocity profile, whereas the axis of eye rotation relative to the head varied throughout the movement and the velocity profiles were more ragged. 4. Plots of 3D eye orientation revealed strong and consistent looping in eye trajectories relative to space.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 70 (6) ◽  
pp. 2678-2683 ◽  
Author(s):  
K. E. Cullen ◽  
D. Guitton ◽  
C. G. Rey ◽  
W. Jiang

1. Previous studies in the cat have demonstrated that output neurons of the superior collicular as well as brain stem omnipause neurons have discharges that are best correlated, not with the trajectory of the eye in the head but, with the trajectory of the visual axis in space (gaze = eye-in-head + head-in-space) during rapid orienting coordinated eye and head movements. In this study, we describe the gaze-related activity of cat premotor “inhibitory burst neurons”(IBNs) identified on the basis of their position relative to the abducens nucleus. 2. The firing behavior of IBNs was studied during 1) saccades made with the head stationary, 2) active orienting combined eye-head gaze shifts, and 3) passive movements of the head on the body. IBN discharges were well correlated with the duration and amplitude of saccades made when the head was stationary. In both head-free paradigms, the behavior of cat IBNs differed from that of previously described primate “saccade bursters”. The duration of their burst was better correlated with gaze than saccade duration, and the total number of spikes in a burst was well correlated with gaze amplitude and generally poorly correlated with saccade amplitude. The behavior of cat IBNs also differed from that of previously described primate “gaze bursters”. The slope of the relationship between the total number of spikes and gaze amplitude observed during head-free gaze shifts was significantly lower than that observed during head-fixed saccades. 3. These studies suggest that cat IBNs do not fit into the categories of gaze-bursters or saccade-bursters that have been described in primate studies.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document