The Role of 5-Hydroxytryptamine3 Receptors in the Vagal Afferent Activation-Induced Inhibition of the First Cervical Dorsal Horn Spinal Neurons Projected from Tooth Pulp in the Rat

2004 ◽  
Vol 311 (2) ◽  
pp. 803-810 ◽  
Author(s):  
Takeshi Tanimoto ◽  
Mamoru Takeda ◽  
Toshimi Nishikawa ◽  
Shigeji Matsumoto
1999 ◽  
Vol 91 (1) ◽  
pp. 231-239 ◽  
Author(s):  
Uta S. Muth-Selbach ◽  
Irmgard Tegeder ◽  
Kay Brune ◽  
Gerd Geisslinger

Background Prostaglandin play a pivotal role in spinal nociceptive processing. At therapeutic concentrations, acetaminophen is not a cyclooxygenase inhibitor. inhibitor. Thus, it is antinociceptive without having antiinflammatory or gastrointestinal toxic effects. This study evaluated the role of spinal prostaglandin E2 (PGE2) in antinociception produced by intraperitoneally administered acetaminophen. Methods The PGE2 concentrations in the dorsal horn of the spinal cord were measured after formalin was injected into the hind paw of rats. The effect of antinociceptive doses of acetaminophen (100, 200, and 300 mg/kg given intraperitoneally) on PGE2 levels and flinching behavior was monitored Spinal PGE2 and acetaminophen concentrations were obtained by microdialysis using a probe that was implanted transversely through the dorsal horn of the spinal cord at L4. Furthermore, the effects of acetaminophen on urinary prostaglandin excretion were determined. Results Intraperitoneal administration of acetaminophen resulted in a significant decrease in spinal PGE2 release that was associated with a significant reduction in the flinching behavior in the formalin test Acetaminophen was distributed rapidly into the spinal cord with maximum dialysate concentrations 4560 min after intraperitoneal administration. Urinary excretion of prostanoids (PGE2, PGF2alpha, and 6-keto-PGF1alpha) was not significantly altered after acetaminophen administration. Conclusions The data confirm the importance of PGE2 in spinal nociceptive processing. The results suggest that antinociception after acetaminophen administration is mediated, at least in part, by inhibition of spinal PGE2 release. The mechanism, however, remains unknown. The finding that urinary excretion of prostaglandins was not affected might explain why acetaminophen is antinociceptive but does not compromise renal safety.


2013 ◽  
Vol 288 (29) ◽  
pp. 20837-20842 ◽  
Author(s):  
Steven J. Henle ◽  
Lucas P. Carlstrom ◽  
Thomas R. Cheever ◽  
John R. Henley

Negatively targeting the tumor suppressor and phosphoinositide phosphatase PTEN (phosphatase and tensin homologue) promotes axon regrowth after injury. How PTEN functions in axon guidance has remained unknown. Here we report the differential role of PTEN in chemotactic guidance of axonal growth cones. Down-regulating PTEN expression in Xenopus laevis spinal neurons selectively abolished growth cone chemorepulsion but permitted chemoattraction. These findings persisted during cAMP-dependent switching of turning behaviors. Live cell imaging using a GFP biosensor revealed rapid PTEN-dependent depression of phosphatidylinositol 3,4,5-trisphosphate levels in the growth cone induced by the repellent myelin-associated glycoprotein. Moreover, down-regulating PTEN expression blocked negative remodeling of β1-integrin adhesions triggered by myelin-associated glycoprotein, yet permitted integrin clustering by a positive chemotropic treatment. Thus, PTEN negatively regulates growth cone phosphatidylinositol 3,4,5-trisphosphate levels and mediates chemorepulsion, whereas chemoattraction is PTEN-independent. Regenerative therapies targeting PTEN may therefore suppress growth cone repulsion to soluble cues while permitting attractive guidance, an essential feature for re-forming functional neural circuits.


2021 ◽  
Author(s):  
Yajing Xu ◽  
Stephanie Koch ◽  
Alexander Chamessian ◽  
Qianru He ◽  
Mayya Sundukova ◽  
...  

In the spinal cord dorsal horn, sensory circuits undergo remarkable postnatal reorganisation, including refinement of primary afferent A-fibres in the superficial layers, accompanied by decreased cutaneous sensitivity. Here we show a physiological role of microglia necessary for normal development of dorsal horn sensory circuits and tactile sensitivity. In the absence of microglial engulfment, superfluous A-fibre projections persist, leading to lifelong hypersensitivity to dynamic touch.


Author(s):  
Marian Kollarik ◽  
Fei Ru ◽  
Nikoleta Pavelkova ◽  
John Mulcahy ◽  
John Hunter ◽  
...  

Author(s):  
Clifford J. Woolf ◽  
Michael W. Salter
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document