Role of NaV1.7 in Action Potential Conduction along Human Bronchial Vagal Afferent C‐fibers

Author(s):  
Marian Kollarik ◽  
Fei Ru ◽  
Nikoleta Pavelkova ◽  
John Mulcahy ◽  
John Hunter ◽  
...  
2013 ◽  
Vol 304 (11) ◽  
pp. R1017-R1023 ◽  
Author(s):  
Yukiko Muroi ◽  
Fei Ru ◽  
Yang-Ling Chou ◽  
Michael J. Carr ◽  
Bradley J. Undem ◽  
...  

Adeno-associated virus delivery systems and short hairpin RNA (shRNA) were used to selectively silence the voltage-gated sodium channel NaV 1.7 in the nodose ganglia of guinea pigs. The cough reflex in these animals was subsequently assessed. NaV 1.7 shRNA was delivered to the majority of nodose ganglia neurons [50–60% transfection rate determined by green fluorescent protein (GFP) gene cotransfection] and action potential conduction in the nodose vagal nerve fibers, as evaluated using an extracellular recording technique, was markedly and significantly reduced. By contrast, <5% of neurons in the jugular vagal ganglia neurons were transfected, and action potential conduction in the jugular vagal nerve fibers was unchanged. The control virus (with GFP expression) was without effect on action potential discharge and conduction in either ganglia. In vivo, NaV 1.7 silencing in the nodose ganglia nearly abolished cough evoked by mechanically probing the tracheal mucosa in anesthetized guinea pigs. Stimuli such as capsaicin and bradykinin that are known to stimulate both nodose and jugular C-fibers evoked coughing in conscious animals was unaffected by NaV 1.7 silencing in the nodose ganglia. Nodose C-fiber selective stimuli including adenosine, 2-methyl-5-HT, and ATP all failed to evoke coughing upon aerosol challenge. These results indicate that cough is independently regulated by two vagal afferent nerve subtypes in guinea pigs, with nodose Aδ fibers regulating cough evoked mechanically from the trachea and bradykinin- and capsaicin-evoked cough regulated by C-fibers arising from the jugular ganglia.


2003 ◽  
Vol 89 (3) ◽  
pp. 1196-1204 ◽  
Author(s):  
Bradley J. Undem ◽  
Eun Joo Oh ◽  
Eric Lancaster ◽  
Daniel Weinreich

The effect of reducing extracellular calcium concentration ([Ca2+]o) on vagal afferent excitability was analyzed in a guinea pig isolated vagally innervated trachea-bronchus preparation. Afferent fibers were characterized as either having low-threshold, rapidly adapting mechanosensors (Aδ fibers) or nociceptive-like phenotypes (Aδ and C fibers). The nociceptors were derived from neurons within the jugular ganglia, whereas the low-threshold mechanosensors were derived from neurons within the nodose ganglia. Reducing [Ca2+]o did not affect the excitability of the low-threshold mechanosensors in the airway. By contrast, reducing [Ca2+]o selectively increased the excitability of airway nociceptors as manifested by a substantive increase in action potential discharge in response to mechanical stimulation, and in a subset of fibers, by overtly evoking action potential discharge. This increase in the excitability of nociceptors was not mimicked by a combination of ω-conotoxin and nifedipine or tetraethylammonium. Whole cell patch recordings from airway-labeled and unlabeled neurons in the vagal jugular ganglia support the hypothesis that [Ca2+]o inhibits a nonselective cation conductance in vagal nociceptors that may serve to regulate excitability of the nerve terminals within the airways.


1972 ◽  
Vol 6 (4) ◽  
pp. 368-374 ◽  
Author(s):  
R. E. EDMANDS ◽  
K. GREENSPAN ◽  
J. C. BAILEY

2013 ◽  
Vol 304 (10) ◽  
pp. G908-G916 ◽  
Author(s):  
Shizhong Zhang ◽  
Gintautas Grabauskas ◽  
Xiaoyin Wu ◽  
Moon Kyung Joo ◽  
Andrea Heldsinger ◽  
...  

Sensitization of esophageal afferents plays an important role in esophageal nociception, but the mechanism is less clear. Our previous studies demonstrated that mast cell (MC) activation releases the preformed mediators histamine and tryptase, which play important roles in sensitization of esophageal vagal nociceptive C fibers. PGD2 is a lipid mediator released by activated MCs. Whether PGD2 plays a role in this sensitization process has yet to be determined. Expression of the PGD2 DP1 and DP2 receptors in nodose ganglion neurons was determined by immunofluorescence staining, Western blotting, and RT-PCR. Extracellular recordings were performed in ex vivo esophageal-vagal preparations. Action potentials evoked by esophageal distension were compared before and after perfusion of PGD2, DP1 and DP2 receptor agonists, and MC activation, with or without pretreatment with antagonists. The effect of PGD2 on 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI)-labeled esophageal nodose neurons was determined by patch-clamp recording. Our results demonstrate that DP1 and DP2 receptor mRNA and protein were expressed mainly in small- and medium-diameter neurons in nodose ganglia. PGD2 significantly increased esophageal distension-evoked action potential discharges in esophageal nodose C fibers. The DP1 receptor agonist BW 245C mimicked this effect. PGD2 directly sensitized DiI-labeled esophageal nodose neurons by decreasing the action potential threshold. Pretreatment with the DP1 receptor antagonist BW A868C significantly inhibited PGD2 perfusion- or MC activation-induced increases in esophageal distension-evoked action potential discharges in esophageal nodose C fibers. In conclusion, PGD2 plays an important role in MC activation-induced sensitization of esophageal nodose C fibers. This adds a novel mechanism of visceral afferent sensitization.


2005 ◽  
Vol 289 (3) ◽  
pp. R695-R703 ◽  
Author(s):  
E. H. E. M. van de Wall ◽  
P. Duffy ◽  
R. C. Ritter

Capsaicin treatment destroys vagal afferent C fibers and markedly attenuates reduction of food intake and induction of hindbrain Fos expression by CCK. However, both anatomical and electrophysiological data indicate that some gastric vagal afferents are not destroyed by capsaicin. Because CCK enhances behavioral and electrophysiological responses to gastric distension in rats and people, we hypothesized that CCK might enhance the vagal afferent response to gastric distension via an action on capsaicin-insensitive vagal afferents. To test this hypothesis, we quantified expression of Fos-like immunoreactivity (Fos) in the dorsal vagal complex (DVC) of capsaicin-treated (Cap) and control rats (Veh), following gastric balloon distension alone and in combination with CCK injection. In Veh rats, intraperitoneal CCK significantly increased DVC Fos, especially in nucleus of the solitary tract (NTS), whereas in Cap rats, CCK did not significantly increase DVC Fos. In contrast to CCK, gastric distension did significantly increase Fos expression in the NTS of both Veh and Cap rats, although distension-induced Fos was attenuated in Cap rats. When CCK was administered during gastric distension, it significantly enhanced NTS Fos expression in response to distension in Cap rats. Furthermore, CCK's enhancement of distension-induced Fos in Cap rats was reversed by the selective CCK-A receptor antagonist lorglumide. We conclude that CCK directly activates capsaicin-sensitive C-type vagal afferents. However, in capsaicin-resistant A-type afferents, CCK's principal action may be facilitation of responses to gastric distension.


1997 ◽  
Vol 272 (1) ◽  
pp. G100-G105 ◽  
Author(s):  
A. Rodriguez-Membrilla ◽  
P. Vergara

A meal disrupts migrating motor complexes (MMC) in the rat intestine through stimulation of peripheral cholecystokinin (CCK)-B and central CCK-A receptors. The aim of this study was to determine pathways implicated in postprandial disruption of the MMC mediated by CCK. Sprague-Dawley rats were prepared with electrodes for electromyography in the small intestine, and ablation of vagal afferent C-fibers by capsaicin was carried out. Endogenous release of CCK was induced by oral administration of soybean trypsin inhibitor (SBTI). In control rats SBTI disrupted MMC and generated an irregular spiking activity that lasted longer than 3 h. Intravenous infusion of L-365,260 (2 x 10(-7) mol/kg) but not of L-364,718 (3 x 10(-9) mol/kg) restored the MMC pattern. In capsaicin-treated rats, SBTI did not modify fasting activity. Infusion of CCK octapeptide (CCK-8) at 3 x 10(-9) mol.kg-1.h-1 disrupted the MMC, although the response was quantitatively and qualitatively different from SBTI. The effect was reversed by intravenous infusion of L-364,718 or L-365,260 and intracerebroventricular infusion of L-364,718. In capsaicin-treated rats, the intracerebroventricular or intravenous infusion of L-364,718 inhibited CCK-8 effects. However, the intravenous infusion of L-365,260 did not reverse the MMC pattern. These results suggest that the disruption of the MMC mediated by CCK is due to stimulation of peripheral CCK-B receptors located in vagal afferent fibers. This initiates a reflex including stimulation of central CCK-A receptors. Exogenous CCK also stimulates peripheral CCK-A receptors not located in capsaicin-sensitive vagal afferent fibers.


2011 ◽  
Vol 105 (6) ◽  
pp. 2772-2780 ◽  
Author(s):  
Angelina Ramirez-Navarro ◽  
Patricia A. Glazebrook ◽  
Michelle Kane-Sutton ◽  
Caroline Padro ◽  
David D. Kline ◽  
...  

The voltage-gated K+ channel Kv1.3 has been reported to regulate transmitter release in select central and peripheral neurons. In this study, we evaluated its role at the synapse between visceral sensory afferents and secondary neurons in the nucleus of the solitary tract (NTS). We identified mRNA and protein for Kv1.3 in rat nodose ganglia using RT-PCR and Western blot analysis. In immunohistochemical experiments, anti-Kv1.3 immunoreactivity was very strong in internal organelles in the soma of nodose neurons with a weaker distribution near the plasma membrane. Anti-Kv1.3 was also identified in the axonal branches that project centrally, including their presynaptic terminals in the medial and commissural NTS. In current-clamp experiments, margatoxin (MgTx), a high-affinity blocker of Kv1.3, produced an increase in action potential duration in C-type but not A- or Ah-type neurons. To evaluate the role of Kv1.3 at the presynaptic terminal, we examined the effect of MgTx on tract evoked monosynaptic excitatory postsynaptic currents (EPSCs) in brain slices of the NTS. MgTx increased the amplitude of evoked EPSCs in a subset of neurons, with the major increase occurring during the first stimuli in a 20-Hz train. These data, together with the results from somal recordings, support the hypothesis that Kv1.3 regulates the duration of the action potential in the presynaptic terminal of C fibers, limiting transmitter release to the postsynaptic cell.


2004 ◽  
Vol 287 (5) ◽  
pp. C1300-C1310 ◽  
Author(s):  
Tatiana L. Radzyukevich ◽  
Amy E. Moseley ◽  
Daniel A. Shelly ◽  
Gregory A. Redden ◽  
Michael M. Behbehani ◽  
...  

This study uses genetically altered mice to examine the contribution of the Na+-K+-ATPase α2 catalytic subunit to resting potential, excitability, and contractility of the perinatal diaphragm. The α2 protein is reduced by 38% in α2-heterozygous and absent in α2-knockout mice, and α1-isoform is upregulated 1.9-fold in α2-knockout. Resting potentials are depolarized by 0.8–4.0 mV in heterozygous and knockout mice. Action potential threshold, overshoot, and duration are normal. Spontaneous firing, a developmental function, is impaired in knockout diaphragm, but this does not compromise its ability to fire evoked action potential trains, the dominant mode of activation near birth. Maximum tetanic force, rate of activation, force-frequency and force-voltage relationships, and onset and magnitude of fatigue are not changed. The major phenotypic consequence of reduced α2 content is that relaxation from contraction is 1.7-fold faster. This finding reveals a distinct cellular role of the α2-isoform at a step after membrane excitation, which cannot be restored simply by increasing α1 content. Na+/Ca2+ exchanger expression decreases in parallel with α2-isoform, suggesting that Ca2+ extrusion is affected by the altered α2 genotype. There are no major compensatory changes in expression of sarcoplasmic reticulum Ca2+-ATPase, phospholamban, or plasma membrane Ca2+-ATPase. These results demonstrate that the Na+-K+-ATPase α1-isoform alone is able to maintain equilibrium K+ and Na+ gradients and to substitute for α2-isoform in most cellular functions related to excitability and force. They further indicate that the α2-isoform contributes significantly less at rest than expected from its proportional content but can modulate contractility during muscle contraction.


Sign in / Sign up

Export Citation Format

Share Document