scholarly journals Inverting singlet and triplet excited states using strong light-matter coupling

2019 ◽  
Vol 5 (12) ◽  
pp. eaax4482 ◽  
Author(s):  
Elad Eizner ◽  
Luis A. Martínez-Martínez ◽  
Joel Yuen-Zhou ◽  
Stéphane Kéna-Cohen

In organic microcavities, hybrid light-matter states can form with energies that differ from the bare molecular excitation energies by nearly 1 eV. A timely question, given the recent advances in the development of thermally activated delayed fluorescence materials, is whether strong light-matter coupling can be used to invert the ordering of singlet and triplet states and, in addition, enhance reverse intersystem crossing (RISC) rates. Here, we demonstrate a complete inversion of the singlet lower polariton and triplet excited states. We also unambiguously measure the RISC rate in strongly coupled organic microcavities and find that, regardless of the large energy level shifts, it is unchanged compared to films of the bare molecules. This observation is a consequence of slow RISC to the lower polariton due to the delocalized nature of the state across many molecules and an inability to compete with RISC to the dark exciton reservoir.

2020 ◽  
Vol 4 (12) ◽  
pp. 3602-3615 ◽  
Author(s):  
Jonathan S. Ward ◽  
Andrew Danos ◽  
Patrycja Stachelek ◽  
Mark A. Fox ◽  
Andrei S. Batsanov ◽  
...  

This work shows that trifluoromethyl (CF3) substituents can be used to increase the rate of thermally activated delayed fluorescence (TADF) in conjugated organic molecules by tuning the excitonic character of the singlet and triplet excited states.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Yu ◽  
Suman Mallick ◽  
Mao Wang ◽  
Karl Börjesson

AbstractStrong light-matter coupling provides the means to challenge the traditional rules of chemistry. In particular, an energy inversion of singlet and triplet excited states would be fundamentally remarkable since it would violate the classical Hund’s rule. An organic chromophore possessing a lower singlet excited state can effectively harvest the dark triplet states, thus enabling 100% internal quantum efficiency in electrically pumped light-emitting diodes and lasers. Here we demonstrate unambiguously an inversion of singlet and triplet excited states of a prototype molecule by strong coupling to an optical cavity. The inversion not only implies that the polaritonic state lies at a lower energy, but also a direct energy pathway between the triplet and polaritonic states is opened. The intrinsic photophysics of reversed-intersystem crossing are thereby completely overturned from an endothermic process to an exothermic one. By doing so, we show that it is possible to break the limit of Hund’s rule and manipulate the energy flow in molecular systems by strong light-matter coupling. Our results will directly promote the development of organic light-emitting diodes based on reversed-intersystem crossing. Moreover, we anticipate that it provides the pathway to the creation of electrically pumped polaritonic lasers in organic systems.


2020 ◽  
Author(s):  
Yi YU ◽  
Suman Mallick ◽  
Mao Wang ◽  
Karl Börjesson

Strong light-matter coupling provides the means to challenge the traditional rules of chemistry. In particular, an energy inversion of singlet and triplet excited states would be fundamentally remarkable since it would violate the classical Hund’s rule. An organic chromophore possessing a lower singlet excited state can effectively harvest the “dark” triplet states, thus enabling 100% internal quantum efficiency in electrically pumped light-emitting diodes and lasers. Here we demonstrate unambiguously an inversion of singlet and triplet excited states of a prototype molecule by strong coupling to an optical cavity. The inversion not only implies that the polaritonic state lies at a lower energy, but also a direct energy pathway between the triplet and polaritonic states is opened. The intrinsic photophysics of reversed-intersystem crossing are thereby completely overturned from an endothermic process to an exothermic one. By doing so, we show that it is possible to break the limit of Hund’s rule and manipulate the energy flow in molecular systems by strong light-matter coupling. Our results will directly promote the development of organic light-emitting diodes based on reversed-intersystem crossing. Moreover, we anticipate that it provides the pathway to the creation of electrically pumped polaritonic lasers in organic systems.


2017 ◽  
Vol 70 (4) ◽  
pp. 387 ◽  
Author(s):  
Götz Bucher

The intramolecular interaction of ketone triplet excited states with nucleophilic substituents is investigated by studying the electronic properties of phenalenone and a range of phenalenones functionalized in position 9 as a model system. In accordance with the literature, a (π,π*) triplet excited state is predicted for phenalenone. Similarly, 9-fluoro-, 9-chloro-, and 9-methoxyphenalenone are calculated to have (π,π*) lowest triplet excited states, whereas the lowest triplet states of 9-bromo-, 9-iodo, 9-methylthio, and 9-dimethylaminophenalenone are predicted to have (σ*,π*) character. As a result of the interaction between halogen and oxygen lone pairs increasing with increasing orbital size, the antibonding linear combination of substituent lone pairs with oxygen lone pairs sufficiently rises in energy to change the character of the lowest triplet excited state of the 9-substituted phenalenones from (π,π*) to (σ*,π*). These unusual triplet excited states or exciplexes should essentially behave like (n,π*) triplets states, but will differ from pure (n,π*) states by showing significant spin densities at the substituent heteroatoms, predicted to reach values of 0.25 for 9-iodophenalenone, and ~0.5 for 9-dimethylaminophenalenone. Vertical T1–T2 excitation energies calculated indicate that the stabilization of the (σ*,π*) relative to the (π,π*) state can reach 1 eV. Preliminary calculations on the triplet excited states of 2-iodobenzophenone, 4-iodo-2-butanone, and iodoacetone indicate that intramolecular triplet exciplex formation should be a general phenomenon, as long as the ring being formed is at least a five-membered ring.


2020 ◽  
Author(s):  
Yi YU ◽  
Suman Mallick ◽  
Mao Wang ◽  
Karl Börjesson

Strong light-matter coupling provides the means to challenge the traditional rules of chemistry. In particular, an energy inversion of singlet and triplet excited states would be fundamentally remarkable since it would violate the classical Hund’s rule. An organic chromophore possessing a lower singlet excited state can effectively harvest the “dark” triplet states, thus enabling 100% internal quantum efficiency in electrically pumped light-emitting diodes and lasers. Here we demonstrate unambiguously an inversion of singlet and triplet excited states of a prototype molecule by strong coupling to an optical cavity. The inversion not only implies that the polaritonic state lies at a lower energy, but also a direct energy pathway between the triplet and polaritonic states is opened. The intrinsic photophysics of reversed-intersystem crossing are thereby completely overturned from an endothermic process to an exothermic one. By doing so, we show that it is possible to break the limit of Hund’s rule and manipulate the energy flow in molecular systems by strong light-matter coupling. Our results will directly promote the development of organic light-emitting diodes based on reversed-intersystem crossing. Moreover, we anticipate that it provides the pathway to the creation of electrically pumped polaritonic lasers in organic systems.


Chemistry ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 532-549
Author(s):  
Felix Plasser

Polycyclic aromatic hydrocarbons (PAH) are a prominent substance class with a variety of applications in molecular materials science. Their electronic properties crucially depend on the bond topology in ways that are often highly non-intuitive. Here, we study, using density functional theory, the triplet states of four biphenylene-derived PAHs finding dramatically different triplet excitation energies for closely related isomeric structures. These differences are rationalised using a qualitative description of Clar sextets and Baird quartets, quantified in terms of nucleus independent chemical shifts, and represented graphically through a recently developed method for visualising chemical shielding tensors (VIST). The results are further interpreted in terms of a 2D rigid rotor model of aromaticity and through an analysis of the natural transition orbitals involved in the triplet excited states showing good consistency between the different viewpoints. We believe that this work constitutes an important step in consolidating these varying viewpoints of electronically excited states.


2021 ◽  
Author(s):  
Felix Plasser

Polycyclic aromatic hydrocarbons (PAH) are a prominent substance class with a variety of applications in molecular materials science. Their electronic properties crucially depend on the bond topology in ways that are often highly non-intuitive. Here, we study, using density functional theory, the triplet states of four PAHs based on the biphenylene motif finding dramatically different triplet excitation energies for closely related isomeric structures. These differences are rationalised using a qualitative description of Clar sextets and Baird quartets, quantified in terms of nucleus independent chemical shifts, and represented graphically through a recently developed method for visualising chemical shielding tensors (VIST). These results are further interpreted in terms of a 2D rigid rotor model of aromaticity and through an analysis of the natural transition orbitals involved in the triplet excited states showing good consistency between the different viewpoints. We believe that this work constitutes an important step in consolidating these varying viewpoints of electronically excited states.


2021 ◽  
Author(s):  
Jeannine Grüne ◽  
Vladimir Dyakonov ◽  
Andreas Sperlich

Triplet excited states in organic semiconductor materials and devices are notoriously difficult to detect and study with established spectroscopic methods. Yet, they are a crucial intermediate step in next-generation organic...


2021 ◽  
Author(s):  
Felix Plasser

Polycyclic aromatic hydrocarbons (PAH) are a prominent substance class with a variety of applications in molecular materials science. Their electronic properties crucially depend on the bond topology in ways that are often highly non-intuitive. Here, we study, using density functional theory, the triplet states of four PAHs based on the biphenylene motif finding dramatically different triplet excitation energies for closely related isomeric structures. These differences are rationalised using a qualitative description of Clar sextets and Baird quartets, quantified in terms of nucleus independent chemical shifts, and represented graphically through a recently developed method for visualising chemical shielding tensors (VIST). These results are further interpreted in terms of a 2D rigid rotor model of aromaticity and through an analysis of the natural transition orbitals involved in the triplet excited states showing good consistency between the different viewpoints. We believe that this work constitutes an important step in consolidating these varying viewpoints of electronically excited states.


Sign in / Sign up

Export Citation Format

Share Document