scholarly journals Barrier-Free Reverse-Intersystem Crossing by Strong Light-Matter Coupling

Author(s):  
Yi YU ◽  
Suman Mallick ◽  
Mao Wang ◽  
Karl Börjesson

Strong light-matter coupling provides the means to challenge the traditional rules of chemistry. In particular, an energy inversion of singlet and triplet excited states would be fundamentally remarkable since it would violate the classical Hund’s rule. An organic chromophore possessing a lower singlet excited state can effectively harvest the “dark” triplet states, thus enabling 100% internal quantum efficiency in electrically pumped light-emitting diodes and lasers. Here we demonstrate unambiguously an inversion of singlet and triplet excited states of a prototype molecule by strong coupling to an optical cavity. The inversion not only implies that the polaritonic state lies at a lower energy, but also a direct energy pathway between the triplet and polaritonic states is opened. The intrinsic photophysics of reversed-intersystem crossing are thereby completely overturned from an endothermic process to an exothermic one. By doing so, we show that it is possible to break the limit of Hund’s rule and manipulate the energy flow in molecular systems by strong light-matter coupling. Our results will directly promote the development of organic light-emitting diodes based on reversed-intersystem crossing. Moreover, we anticipate that it provides the pathway to the creation of electrically pumped polaritonic lasers in organic systems.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Yu ◽  
Suman Mallick ◽  
Mao Wang ◽  
Karl Börjesson

AbstractStrong light-matter coupling provides the means to challenge the traditional rules of chemistry. In particular, an energy inversion of singlet and triplet excited states would be fundamentally remarkable since it would violate the classical Hund’s rule. An organic chromophore possessing a lower singlet excited state can effectively harvest the dark triplet states, thus enabling 100% internal quantum efficiency in electrically pumped light-emitting diodes and lasers. Here we demonstrate unambiguously an inversion of singlet and triplet excited states of a prototype molecule by strong coupling to an optical cavity. The inversion not only implies that the polaritonic state lies at a lower energy, but also a direct energy pathway between the triplet and polaritonic states is opened. The intrinsic photophysics of reversed-intersystem crossing are thereby completely overturned from an endothermic process to an exothermic one. By doing so, we show that it is possible to break the limit of Hund’s rule and manipulate the energy flow in molecular systems by strong light-matter coupling. Our results will directly promote the development of organic light-emitting diodes based on reversed-intersystem crossing. Moreover, we anticipate that it provides the pathway to the creation of electrically pumped polaritonic lasers in organic systems.


2020 ◽  
Author(s):  
Yi YU ◽  
Suman Mallick ◽  
Mao Wang ◽  
Karl Börjesson

Strong light-matter coupling provides the means to challenge the traditional rules of chemistry. In particular, an energy inversion of singlet and triplet excited states would be fundamentally remarkable since it would violate the classical Hund’s rule. An organic chromophore possessing a lower singlet excited state can effectively harvest the “dark” triplet states, thus enabling 100% internal quantum efficiency in electrically pumped light-emitting diodes and lasers. Here we demonstrate unambiguously an inversion of singlet and triplet excited states of a prototype molecule by strong coupling to an optical cavity. The inversion not only implies that the polaritonic state lies at a lower energy, but also a direct energy pathway between the triplet and polaritonic states is opened. The intrinsic photophysics of reversed-intersystem crossing are thereby completely overturned from an endothermic process to an exothermic one. By doing so, we show that it is possible to break the limit of Hund’s rule and manipulate the energy flow in molecular systems by strong light-matter coupling. Our results will directly promote the development of organic light-emitting diodes based on reversed-intersystem crossing. Moreover, we anticipate that it provides the pathway to the creation of electrically pumped polaritonic lasers in organic systems.


2018 ◽  
Vol 6 (21) ◽  
pp. 5721-5726 ◽  
Author(s):  
Peisen Yuan ◽  
Xianfeng Qiao ◽  
Donghang Yan ◽  
Dongge Ma

Triplet excited states in exciplex-based organic light emitting diodes (OLEDs) can be wasted by transferring their energy to the host material in a system with smaller triplet energy levels.


2021 ◽  
Author(s):  
Daigo Miyajima ◽  
Naoya Aizawa ◽  
Yong-Jin Pu ◽  
Atsuko Nihonyanagi ◽  
Ryotaro Ibuka ◽  
...  

Abstract Hund’s multiplicity rule states that for a given electronic configuration, a higher spin state has a lower energy. Rephrasing this rule for molecular excited states predicts a positive energy gap between spin-singlet and spin-triplet excited states, which has been consistent with numerous experimental observations over almost a century. Here, we report a fluorescent molecule that disobeys Hund’s rule, possessing a negative singlet–triplet energy gap of –11 meV. The energy inversion of the singlet and triplet excited states results in delayed fluorescence with short time constants of 0.2 μs, which anomalously decrease with decreasing temperature due to the emissive singlet character of the lowest-energy excited state. Organic light-emitting diodes using this molecule exhibited a fast transient electroluminescence decay with a peak external quantum efficiency of 17%, demonstrating potential implications for optoelectronic devices, including displays, lighting, and lasers.


2019 ◽  
Vol 5 (12) ◽  
pp. eaax4482 ◽  
Author(s):  
Elad Eizner ◽  
Luis A. Martínez-Martínez ◽  
Joel Yuen-Zhou ◽  
Stéphane Kéna-Cohen

In organic microcavities, hybrid light-matter states can form with energies that differ from the bare molecular excitation energies by nearly 1 eV. A timely question, given the recent advances in the development of thermally activated delayed fluorescence materials, is whether strong light-matter coupling can be used to invert the ordering of singlet and triplet states and, in addition, enhance reverse intersystem crossing (RISC) rates. Here, we demonstrate a complete inversion of the singlet lower polariton and triplet excited states. We also unambiguously measure the RISC rate in strongly coupled organic microcavities and find that, regardless of the large energy level shifts, it is unchanged compared to films of the bare molecules. This observation is a consequence of slow RISC to the lower polariton due to the delocalized nature of the state across many molecules and an inability to compete with RISC to the dark exciton reservoir.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ryota Ieuji ◽  
Kenichi Goushi ◽  
Chihaya Adachi

AbstractTriplet–triplet upconversion, in which two triplet excitons are converted to one singlet exciton, is a well-known approach to exceed the limit of electroluminescence quantum efficiency in conventional fluorescence-based organic light-emitting diodes. Considering the spin multiplicity of triplet pairs, upconversion efficiency is usually limited to 20%. Although this limit can be exceeded when the energy of a triplet pair is lower than that of a second triplet excited state, such as for rubrene, it is generally difficult to engineer the energy levels of higher triplet excited states. Here, we investigate the upconversion efficiency of a series of new anthracene derivatives with different substituents. Some of these derivatives show upconversion efficiencies close to 50% even though the calculated energy levels of the second triplet excited states are lower than twice the lowest triplet energy. A possible upconversion mechanism is proposed based on the molecular structures and quantum chemical calculations.


Sign in / Sign up

Export Citation Format

Share Document