scholarly journals Forests: Carbon sequestration, biomass energy, or both?

2020 ◽  
Vol 6 (13) ◽  
pp. eaay6792 ◽  
Author(s):  
Alice Favero ◽  
Adam Daigneault ◽  
Brent Sohngen

There is a continuing debate over the role that woody bioenergy plays in climate mitigation. This paper clarifies this controversy and illustrates the impacts of woody biomass demand on forest harvests, prices, timber management investments and intensity, forest area, and the resulting carbon balance under different climate mitigation policies. Increased bioenergy demand increases forest carbon stocks thanks to afforestation activities and more intensive management relative to a no-bioenergy case. Some natural forests, however, are converted to more intensive management, with potential biodiversity losses. Incentivizing both wood-based bioenergy and forest sequestration could increase carbon sequestration and conserve natural forests simultaneously. We conclude that the expanded use of wood for bioenergy will result in net carbon benefits, but an efficient policy also needs to regulate forest carbon sequestration.

2020 ◽  
Vol 4 (1) ◽  
pp. 195
Author(s):  
Nguyen Thi Dong ◽  
Van Huu Tap ◽  
Nguyen Thi Phương Mai ◽  
Nguyen Thi Hoang Lien

Climate change and an increase in the greenhouse effect are a matter of global concern. One of reasons for this phenomenon is the increase in greenhouse gases, especially CO2. Therefore, the authors investigated CO2 absorption from forests of 45 plots in Ba Be National Park, characterized by 3 forest states as rich, medium and poor forest, rehabilitated forest after exploitation to estimate carbon sequestration of the forest. In which, the carbon stock of rich forest reaches 273.17 tones/ha, the medium forest is 136.23 tones/ha and the poor forest, rehabilitated forest is 42.06 tones/ha. With a forest growth rate of 1.8% per year, the carbon sequestration in Ba Be National Park for 3 forest states is about 16,499 tones per year. This will contribute to improve environmental quality, reducing greenhouse gas emissions and creating a scientific basis for managers to develop a payment mechanism of forest carbon sequestration services.


Energy Policy ◽  
2019 ◽  
Vol 126 ◽  
pp. 391-401 ◽  
Author(s):  
J.S. Baker ◽  
C.M. Wade ◽  
B.L. Sohngen ◽  
S. Ohrel ◽  
A.A. Fawcett

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Lindsey Wise ◽  
Eric Marland ◽  
Gregg Marland ◽  
Jason Hoyle ◽  
Tamara Kowalczyk ◽  
...  

Abstract Background Although there is broad agreement that negative carbon emissions may be required in order to meet the global climate change targets specified in the Paris Agreement and that carbon sequestration in the terrestrial biosphere can be an important contributor, there are important accounting issues that often discourage forest carbon sequestration projects. The legislation establishing the California forest offset program, for example, requires that offsets be “real, additional, quantifiable, permanent, verifiable, and enforceable”. While these are all clearly desirable attributes, their implementation has been a great challenge in balancing complexity, expense, and risk. Most forest offset protocols carry similar accounting objectives, but often with different details, (e.g. Richards and Huebner in Carbon Manag 3(4):393–410, 2012 and Galik et al. in Mitig Adapt Strateg Glob Change 14:677–690, 2009). The result is that the complexity, expense, and risk of participation discourage participation and make it more difficult to achieve climate mitigation goals. We focus on the requirements for accounting and permanence to illustrate that current requirements disproportionately disadvantage small landowners. Results The simplified 1040EZ filing system for U.S. income taxes may provide insight for a protocol model that balances reward, effort, and risk, while still achieving the overall objectives of standardized offset protocols. In this paper, we present initial ideas and lay the groundwork behind a “2050EZ” protocol for forest carbon sequestration as a complement to existing protocols. Conclusion The Paris Agreement states that “Parties should take action to conserve and enhance, as appropriate, sinks and reservoirs of greenhouse gases.” The Paris Agreement also refers to issues such as equity, sustainable development, and other non-carbon benefits. The challenge is to provide incentives for maintaining and increasing the amount of carbon sequestered in the biosphere. Monitoring and verification of carbon storage need to be sufficient to demonstrate sequestration from the atmosphere while providing clear incentives and simple accounting approaches that encourage participation by diverse participants, including small land holders.


2004 ◽  
Vol 80 (1) ◽  
pp. 109-124 ◽  
Author(s):  
Brian C. Murray ◽  
Bruce A. McCarl ◽  
Heng-Chi Lee

Ecosphere ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Tyson L. Swetnam ◽  
Paul D. Brooks ◽  
Holly R. Barnard ◽  
Adrian A. Harpold ◽  
Erika L. Gallo

Sign in / Sign up

Export Citation Format

Share Document