Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase

Science ◽  
2004 ◽  
Vol 306 (5699) ◽  
pp. 1161-1164 ◽  
Author(s):  
Y. Politi
2020 ◽  
Vol 22 (4) ◽  
pp. 1900922 ◽  
Author(s):  
Christoph Lauer ◽  
Sebastian Haußmann ◽  
Patrick Schmidt ◽  
Carolin Fischer ◽  
Doreen Rapp ◽  
...  

2008 ◽  
Vol 105 (45) ◽  
pp. 17362-17366 ◽  
Author(s):  
Y. Politi ◽  
R. A. Metzler ◽  
M. Abrecht ◽  
B. Gilbert ◽  
F. H. Wilt ◽  
...  

1997 ◽  
Vol 264 (1380) ◽  
pp. 461-465 ◽  
Author(s):  
Elia Beniash ◽  
Joanna Aizenberg ◽  
Lia Addadi ◽  
Stephen Weiner

2018 ◽  
Vol 18 (4) ◽  
pp. 2189-2201 ◽  
Author(s):  
Marie Albéric ◽  
Elad N. Caspi ◽  
Mathieu Bennet ◽  
Widad Ajili ◽  
Nadine Nassif ◽  
...  

2014 ◽  
Vol 26 (4) ◽  
pp. 523-535 ◽  
Author(s):  
Maria Sancho-Tomás ◽  
Simona Fermani ◽  
Jaime Gómez-Morales ◽  
Giuseppe Falini ◽  
Juan Manuel García-Ruiz

Author(s):  
Barry M. Heatfield ◽  
Dorothy F. Travis

The endoskeleton of echinoderms is composed of fenestrated calcium carbonate (calcite) permeated by interconnecting channels filled with a variety of cell-types and extracellular fluid containing collagen fibrils. To identify and characterize skeletogenic cells and explore the mechanism of skeleton growth in echinoderms, tissues of regenerating spines of the sea urchin Strongylocentrotus purpuratus were examined by electron microscopy.The tip of the young regenerate is composed of two layers of tissue: an outer epidermis and an inner calcified dermis separated by a thin basal lamina (Fig. 1). In the apical dermis the skeleton consists of longitudinally oriented microspines interconnected by horizontal calcite bridges. During preparation of thin sections, skeletal mineral was lost, leaving a hole, indicated by (ms) in Figs. 1, 2, and 4.


2019 ◽  
Vol 1 ◽  
pp. 100004 ◽  
Author(s):  
Marie Albéric ◽  
Cayla A. Stifler ◽  
Zhaoyong Zou ◽  
Chang-Yu Sun ◽  
Christopher E. Killian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document