Comment on "Changes in Climatic Water Balance Drive Downhill Shifts in Plant Species' Optimum Elevations"

Science ◽  
2011 ◽  
Vol 334 (6053) ◽  
pp. 177-177 ◽  
Author(s):  
R. J. Hijmans
Science ◽  
2011 ◽  
Vol 331 (6015) ◽  
pp. 324-327 ◽  
Author(s):  
S. M. Crimmins ◽  
S. Z. Dobrowski ◽  
J. A. Greenberg ◽  
J. T. Abatzoglou ◽  
A. R. Mynsberge

Science ◽  
2011 ◽  
Vol 334 (6053) ◽  
pp. 177-177 ◽  
Author(s):  
S. Z. Dobrowski ◽  
S. M. Crimmins ◽  
J. A. Greenberg ◽  
J. T. Abatzoglou ◽  
A. R. Mynsberge

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Min Wang ◽  
Ruirui Wang ◽  
Luis Alejandro Jose Mur ◽  
Jianyun Ruan ◽  
Qirong Shen ◽  
...  

AbstractSilicon (Si), the second most abundant element in Earth’s crust, exerts beneficial effects on the growth and productivity of a variety of plant species under various environmental conditions. However, the benefits of Si and its importance to plants are controversial due to differences among the species, genotypes, and the environmental conditions. Although Si has been widely reported to alleviate plant drought stress in both the Si-accumulating and nonaccumulating plants, the underlying mechanisms through which Si improves plant water status and maintains water balance remain unclear. The aim of this review is to summarize the morphoanatomical, physiological, biochemical, and molecular processes that are involved in plant water status that are regulated by Si in response to drought stress, especially the integrated modulation of Si-triggered drought stress responses in Si accumulators and intermediate- and excluder-type plants. The key mechanisms influencing the ability of Si to mitigate the effects of drought stress include enhancing water uptake and transport, regulating stomatal behavior and transpirational water loss, accumulating solutes and osmoregulatory substances, and inducing plant defense- associated with signaling events, consequently maintaining whole-plant water balance. This study evaluates the ability of Si to maintain water balance under drought stress conditions and suggests future research that is needed to implement the use of Si in agriculture. Considering the complex relationships between Si and different plant species, genotypes, and the environment, detailed studies are needed to understand the interactions between Si and plant responses under stress conditions.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1055 ◽  
Author(s):  
Katerina Charalambous ◽  
Adriana Bruggeman ◽  
Marinos Eliades ◽  
Corrado Camera ◽  
Loukia Vassiliou

Green roofs can provide various benefits to urban areas, including stormwater retention. However, semi-arid regions are a challenging environment for green roofs as long dry weather periods are met with short but intense rainfall events. This requires green roofs to retain maximum volumes of stormwater, while being tolerant to minimal irrigation supplies. The objectives of this study are (i) to quantify the stormwater retention of two substrate mixtures with two plant species under natural rainfall; (ii) to assess the performance of two plant species under two levels of deficit irrigation; and (iii) to compute stormwater runoff reduction and reuse by green roofs and rooftop water harvesting systems for three standard residential plot types in urban Nicosia, Cyprus. A rooftop experiment was carried out between February 2016 and April 2017 and results were used to compute long-term performance. Average stormwater retention of the 16 test beds was 77% of the 371-mm rainfall. A survival rate of 88% was recorded for Euphorbia veneris and 20% for Frankenia laevis, for a 30% evapotranspiration irrigation treatment. A combination of a green roof, rainwater harvesting system and 20-m3 tank for irrigation and indoor greywater use reduced stormwater runoff by 47–53%, for the 30-year water balance computations.


Sign in / Sign up

Export Citation Format

Share Document