ANIMAL MODELS: EC Boosts Funds for Mutant Mice

Science ◽  
2001 ◽  
Vol 292 (5524) ◽  
pp. 1985b-1987
Author(s):  
M. Balter
Keyword(s):  
Author(s):  
Julyanne Brassard ◽  
David Marsolais ◽  
Marie-Renee Blanchet

Author(s):  
Marie-Renée Blanchet ◽  
Matthew Gold ◽  
Kelly M. McNagny

Metallomics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1079-1092 ◽  
Author(s):  
Aneta Jończy ◽  
Paweł Lipiński ◽  
Mateusz Ogórek ◽  
Rafał Radosław Starzyński ◽  
Daria Krzysztofik ◽  
...  

Jackson toxic milk mutant mice (tx-J) carrying a missense mutation in the Atp7b gene are animal models of the Wilson disease.


2019 ◽  
Vol 42 ◽  
Author(s):  
Nicole M. Baran

AbstractReductionist thinking in neuroscience is manifest in the widespread use of animal models of neuropsychiatric disorders. Broader investigations of diverse behaviors in non-model organisms and longer-term study of the mechanisms of plasticity will yield fundamental insights into the neurobiological, developmental, genetic, and environmental factors contributing to the “massively multifactorial system networks” which go awry in mental disorders.


2002 ◽  
Vol 69 ◽  
pp. 47-57 ◽  
Author(s):  
Catherine L. R. Merry ◽  
John T. Gallagher

Heparan sulphate (HS) is an essential co-receptor for a number of growth factors, morphogens and adhesion proteins. The biosynthetic modifications involved in the generation of a mature HS chain may determine the strength and outcome of HS–ligand interactions. These modifications are catalysed by a complex family of enzymes, some of which occur as multiple gene products. Various mutant mice have now been generated, which lack the function of isolated components of the HS biosynthetic pathway. In this discussion, we outline the key findings of these studies, and use them to put into context our own work concerning the structure of the HS generated by the Hs2st-/- mice.


Author(s):  
Alicia S. Wilson ◽  
Hsei Di Law ◽  
Christiane B. Knobbe‐Thomsen ◽  
Conor J. Kearney ◽  
Jane Oliaro ◽  
...  

2015 ◽  
Vol 223 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Georg Juckel

Abstract. Inflammational-immunological processes within the pathophysiology of schizophrenia seem to play an important role. Early signals of neurobiological changes in the embryonal phase of brain in later patients with schizophrenia might lead to activation of the immunological system, for example, of cytokines and microglial cells. Microglia then induces – via the neurotoxic activities of these cells as an overreaction – a rarification of synaptic connections in frontal and temporal brain regions, that is, reduction of the neuropil. Promising inflammational animal models for schizophrenia with high validity can be used today to mimic behavioral as well as neurobiological findings in patients, for example, the well-known neurochemical alterations of dopaminergic, glutamatergic, serotonergic, and other neurotransmitter systems. Also the microglial activation can be modeled well within one of this models, that is, the inflammational PolyI:C animal model of schizophrenia, showing a time peak in late adolescence/early adulthood. The exact mechanism, by which activated microglia cells then triggers further neurodegeneration, must now be investigated in broader detail. Thus, these animal models can be used to understand the pathophysiology of schizophrenia better especially concerning the interaction of immune activation, inflammation, and neurodegeneration. This could also lead to the development of anti-inflammational treatment options and of preventive interventions.


Sign in / Sign up

Export Citation Format

Share Document