scholarly journals Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface

Science ◽  
2019 ◽  
Vol 366 (6463) ◽  
pp. 360-364 ◽  
Author(s):  
David A. Walker ◽  
James L. Hedrick ◽  
Chad A. Mirkin

We report a stereolithographic three-dimensional printing approach for polymeric components that uses a mobile liquid interface (a fluorinated oil) to reduce the adhesive forces between the interface and the printed object, thereby allowing for a continuous and rapid print process, regardless of polymeric precursor. The bed area is not size-restricted by thermal limitations because the flowing oil enables direct cooling across the entire print area. Continuous vertical print rates exceeding 430 millimeters per hour with a volumetric throughput of 100 liters per hour have been demonstrated, and proof-of-concept structures made from hard plastics, ceramic precursors, and elastomers have been printed.

2020 ◽  
Vol 15 ◽  
pp. 155892502093344 ◽  
Author(s):  
Timo Grothe ◽  
Bennet Brockhagen ◽  
Jan Lukas Storck

The combination of textiles and three-dimensional printing offers a wide range of research and application areas, but only publications in combination with fused deposition modeling processes can be found so far. In this article the possibility of printing resin directly on textiles in the stereolithography process is presented. A broad spectrum of textiles and surfaces is examined to clearly present the feasibility. It was found that printing directly on most textiles can be performed without major difficulties, while problems were only observed on smooth surfaces and coatings on textiles.


Author(s):  
Simon W Partridge ◽  
Matthew J Benning ◽  
Matthew J German ◽  
Kenneth W Dalgarno

This article describes a proof of concept study designed to evaluate the potential of an in vivo three-dimensional printing route to support minimally invasive repair of the musculoskeletal system. The study uses a photocurable material to additively manufacture in situ a model implant and demonstrates that this can be achieved effectively within a clinically relevant timescale. The approach has the potential to be applied with a wide range of light-curable materials and with development could be applied to create functionally gradient structures in vivo.


2009 ◽  
Vol 00 (00) ◽  
pp. 090730035508060-7
Author(s):  
Deng-Guang Yu ◽  
Chris Branford-White ◽  
Yi-Cheng Yang ◽  
Li-Min Zhu ◽  
Edward William Welbeck ◽  
...  

2020 ◽  
Vol 13 (12) ◽  
pp. e239286
Author(s):  
Kumar Nilesh ◽  
Prashant Punde ◽  
Nitin Shivajirao Patil ◽  
Amol Gautam

Ossifying fibroma (OF) is a rare, benign, fibro-osseous lesion of the jawbone characterised by replacement of the normal bone with fibrous tissue. The fibrous tissue shows varying amount of calcified structures resembling bone and/or cementum. The central variant of OF is rare, and shows predilection for mandible among the jawbone. Although it is classified as fibro-osseous lesion, it clinically behaves as a benign tumour and can grow to large size, causing bony swelling and facial asymmetry. This paper reports a case of large central OF of mandible in a 40-year-old male patient. The lesion was treated by segmental resection of mandible. Reconstruction of the surgical defect was done using avascular fibula bone graft. Role of three-dimensional printing of jaw and its benefits in surgical planning and reconstruction are also highlighted.


Author(s):  
Leandro Ejnisman ◽  
Bruno Gobbato ◽  
Andre Ferrari de França Camargo ◽  
Eduardo Zancul

Sign in / Sign up

Export Citation Format

Share Document