functionally gradient
Recently Published Documents


TOTAL DOCUMENTS

621
(FIVE YEARS 60)

H-INDEX

43
(FIVE YEARS 5)

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6521
Author(s):  
Yeabsra Mekdim Hailu ◽  
Aamer Nazir ◽  
Shang-Chih Lin ◽  
Jeng-Ywan Jeng

Functionally graded lattice structures have attracted much attention in engineering due to their excellent mechanical performance resulting from their optimized and application-specific properties. These structures are inspired by nature and are important for a lightweight yet efficient and optimal functionality. They have enhanced mechanical properties over the uniform density counterparts because of their graded design, making them preferable for many applications. Several studies were carried out to investigate the mechanical properties of graded density lattice structures subjected to different types of loadings mainly related to tensile, compression, and fatigue responses. In applications related to biomedical, automotive, and aerospace sectors, dynamic bending and rotational stresses are critical load components. Therefore, the study of torsional properties of functionally gradient lattice structures will contribute to a better implementation of lattice structures in several sectors. In this study, several functionally gradient triply periodic minimal surfaces structures and strut-based lattice structures were designed in cylindrical shapes having 40% relative density. The HP Multi Jet Fusion 4200 3D printer was used to fabricate all specimens for the experimental study. A torsional experiment until the failure of each structure was conducted to investigate properties of the lattice structures such as torsional stiffness, energy absorption, and failure characteristics. The results showed that the stiffness and energy absorption of structures can be improved by an effective material distribution that corresponds to the stress concentration due to torsional load. The TPMS based functionally gradient design showed a 35% increase in torsional stiffness and 15% increase in the ultimate shear strength compared to their uniform counterparts. In addition, results also revealed that an effective material distribution affects the failure mechanism of the lattice structures and delays the plastic deformation, increasing their resistance to torsional loads.


2021 ◽  
Author(s):  
F.Z Mohammad ◽  
M. Akhtar Sharif ◽  
Anas Ahmed ◽  
Muhammad Suhail

Abstract The development of materials with unique and improved properties using low cost processes is essential to increase performance and reduce cost of the solid rocket motors. Specifically advancements are needed for boost phase nozzle. As these motors operate at very high pressure and temperatures, the nozzle must survive high thermal stresses with minimal erosion to maintain performance. Currently three material choices are being exploited; which are refractory metals, graphite and carbon-carbon composites. Of these three materials graphite is the most attractive choice because of its low cost, light weight, and easy forming. However graphite is prone to erosion, both chemical and mechanical, which may affect the ballistic conditions and mechanical properties of the nozzle. To minimize this erosion Pyrolytic Graphite (PG) coating inside the nozzle is used. However PG coating is prone to cracking and spallation along with very cumbersome deposition process. Another possible methodology to avoid this erosion is to convert the inside surface of the rocket nozzle to Silicon Carbide (SiC), which is very erosion resistant and have much better thermal stability compared to graphite and even PG. Due to its functionally gradient nature such a layer will be very adherent and resistant to spallation. Despite its very good adhesion due to its functionally gradient nature, this layer due to its porous nature exhibit poor oxidation performance compared to a dense SiC layer. The current research is focused on synthesizing, characterizing and oxidation testing of a bi-layer; a functionally gradient inner layer and dense outer layer, SiC coating on graphite.


Author(s):  
Dr. B. Anandavel ◽  
Dr J Anburaj ◽  
Dr K Thillairajan ◽  
V Devakannan

Aim of this research paper is to study the microstructural behavior and mechanical properties of Functionally Gradient (FG) layer of Al-Si alloy castings produced by CDC process. The effect of decantation time on the thickness of functionally gradient castings of Al-4.5 wt % Si alloy as an inner layer and Al-Si alloy with 12.5 wt %Si as outer layers was studied by CDC process. The three different combinations of FGM castings were characterized for microstructural and wear behavior using metallurgical characterization and mechanical testing. From the microstructural and wear behavior of FGM casting at outer layer, FG layer and inner layer, it is observed that the FG layer of FGM casting showed very wear resistance compared to other two layers in the FGM casting.


2021 ◽  
Author(s):  
Muhammad Rizwan ul Haq ◽  
Aamer Nazir ◽  
Jeng-Ywan Jeng

Abstract Functionality and design of mechanical springs are simple and limited due to manufacturing constraints of conventional fabrication methods being used for making helical and wave springs. In recent era, design for additive manufacturing has proven its great worth to design and manufacture optimal, complex as well as intricate structures with better mechanical and lightweigting properties. This study aims to investigate the mechanical behaviour of functionally gradient wave springs as a function of variation in thickness and morphology of each wave. Functionally gradient wave springs incorporated with different morphology and cross-sections including circular, rectangular and combination of both were designed and printed by keeping mass and height constant to investigate their mechanical properties. Loading-unloading experimentation were conducted within the elastic range ( 90 % of compressible distance) in order to study energy absorption/loss, load-bearing capacity and stiffness of all designs. The experimental results were validated by finite element anaylsis by providing the identical boundary conditions of experimental setup. The results revealed that the stiffness of wave spring having rectangular cross-section is increased significantly while energy absorption is almost 90 % increased due to circular cross-section of waves. Overall, the design with combination of round and rectangular cross-sectional waves has better stiffness and energy absorption properties. For further investigation of mechanical properties due to variation in cross-section of waves, more designs including semi-circular and filleted waves, were designed and finite element of those showed that 786 N of load-bearing capacity is achieved in the wave spring having semicircular cross-section of waves which is double than the wave spring having variable circular cross-section of waves.


Author(s):  
Justyna Zygmuntowicz ◽  
Hanna Winkler ◽  
Marcin Wachowski ◽  
Paulina Piotrkiewicz ◽  
Waldemar Kaszuwara

Abstract The investigations applied the original concept of the formation of materials as hybrid gradient composites. Two innovative technologies were used: formation by centrifugal slip casting and sintering with varying proportions of the liquid phase. This allowed us to create a gradient microstructure. This article presents the study of Al2O3-Cu-Mo gradient composites. This work aimed to determine the effect of the metallic phase content on the composite’s microstructure and basic properties. The most critical element of the study will be determining the ability to control the location and flow of the liquid phase during the sintering process. The research demonstrated that adding a third component in the form of Mo reduces the liquid Cu flow onto the surface of the composites during the sintering process. In this research, we achieve results with high cognitive value. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document