Improving Land Cover Maps in Areas of Disagreement of Existing Products using NDVI Time Series of MODIS – Example for EuropeVerbesserung von Landbedeckungskarten in Gebieten widersprüchlicher Grundlagen mit Hilfe der NDVI-Zeitreihe von MODIS – Beispiel für Europa

2014 ◽  
Vol 2014 (5) ◽  
pp. 393-407 ◽  
Author(s):  
Francesco Vuolo ◽  
Clement Atzberger
2020 ◽  
Vol 12 (15) ◽  
pp. 2411 ◽  
Author(s):  
Thanh Noi Phan ◽  
Verena Kuch ◽  
Lukas W. Lehnert

Land cover information plays a vital role in many aspects of life, from scientific and economic to political. Accurate information about land cover affects the accuracy of all subsequent applications, therefore accurate and timely land cover information is in high demand. In land cover classification studies over the past decade, higher accuracies were produced when using time series satellite images than when using single date images. Recently, the availability of the Google Earth Engine (GEE), a cloud-based computing platform, has gained the attention of remote sensing based applications where temporal aggregation methods derived from time series images are widely applied (i.e., the use the metrics such as mean or median), instead of time series images. In GEE, many studies simply select as many images as possible to fill gaps without concerning how different year/season images might affect the classification accuracy. This study aims to analyze the effect of different composition methods, as well as different input images, on the classification results. We use Landsat 8 surface reflectance (L8sr) data with eight different combination strategies to produce and evaluate land cover maps for a study area in Mongolia. We implemented the experiment on the GEE platform with a widely applied algorithm, the Random Forest (RF) classifier. Our results show that all the eight datasets produced moderately to highly accurate land cover maps, with overall accuracy over 84.31%. Among the eight datasets, two time series datasets of summer scenes (images from 1 June to 30 September) produced the highest accuracy (89.80% and 89.70%), followed by the median composite of the same input images (88.74%). The difference between these three classifications was not significant based on the McNemar test (p > 0.05). However, significant difference (p < 0.05) was observed for all other pairs involving one of these three datasets. The results indicate that temporal aggregation (e.g., median) is a promising method, which not only significantly reduces data volume (resulting in an easier and faster analysis) but also produces an equally high accuracy as time series data. The spatial consistency among the classification results was relatively low compared to the general high accuracy, showing that the selection of the dataset used in any classification on GEE is an important and crucial step, because the input images for the composition play an essential role in land cover classification, particularly with snowy, cloudy and expansive areas like Mongolia.


2020 ◽  
Vol 27 (16) ◽  
pp. 20309-20320
Author(s):  
Shahzad Ali ◽  
Malak Henchiri ◽  
Zhang Sha ◽  
Kalisa Wilson ◽  
Bai Yun ◽  
...  

2018 ◽  
Vol 10 (8) ◽  
pp. 1251 ◽  
Author(s):  
Boyu Liu ◽  
Jun Chen ◽  
Jiage Chen ◽  
Weiwei Zhang

Spectral and NDVI values have been used to calculate the change magnitudes of land cover, but may result in many pseudo-changes because of inter-class variance. Recently, the shape information of spectral or NDVI curves such as direction, angle, gradient, or other mathematical indicators have been used to improve the accuracy of land cover change detection. However, these measurements, in terms of the single shape features, can hardly capture the complete trends of curves affected by the unsynchronized phenology. Therefore, the calculated change magnitudes are indistinct such that changes and no-changes have a low contrast. This problem has prevented traditional change detection methods from achieving a higher accuracy using bi-temporal images or NDVI time series. In this paper, a multiple shape parameters-based change detection method is proposed by combining the spectral correlation operator and the shape features of NDVI temporal curves (phase angle cumulant, baseline cumulant, relative cumulation rate, and zero-crossing rate). The change magnitude is derived by integrating all the inter-annual differences of these shape parameters. The change regions are discriminated by an automated threshold selection method known as histogram concavity analysis. The results showed that the mean differences in the change magnitudes of the proposed method between 2100 changed and 2523 unchanged pixels was 32%, the overall accuracy was approximately 88%, and the kappa coefficient was 0.76. A comparative analysis was conducted with bi-temporal image-based methods and NDVI time series-based methods, and we demonstrate that the proposed method is more effective and robust than traditional methods in achieving high-contrast change magnitudes and accuracy.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Long Zhao ◽  
Pan Zhang ◽  
Xiaoyi Ma ◽  
Zhuokun Pan

A timely and accurate understanding of land cover change has great significance in management of area resources. To explore the application of a daily normalized difference vegetation index (NDVI) time series in land cover classification, the present study used HJ-1 data to derive a daily NDVI time series by pretreatment. Different classifiers were then applied to classify the daily NDVI time series. Finally, the daily NDVI time series were classified based on multiclassifier combination. The results indicate that support vector machine (SVM), spectral angle mapper, and classification and regression tree classifiers can be used to classify daily NDVI time series, with SVM providing the optimal classification. The classifiers of K-means and Mahalanobis distance are not suited for classification because of their classification accuracy and mechanism, respectively. This study proposes a method of dimensionality reduction based on the statistical features of daily NDVI time series for classification. The method can be applied to land resource information extraction. In addition, an improved multiclassifier combination is proposed. The classification results indicate that the improved multiclassifier combination is superior to different single classifier combinations, particularly regarding subclassifiers with greater differences.


Author(s):  
H. Costa ◽  
P. Benevides ◽  
F. Marcelino ◽  
M. Caetano

Abstract. A series of five land cover maps, widely known as COS (Carta de Uso e Ocupação do Solo), have been produced since 1990 for mainland Portugal. Previous to 2015, all maps were produced through photo-interpretation of orthophotos. Land cover and land use changes were detected through comparison of previous and recent orthophotos, which were used for map updating, thereby producing a new map. The remaining areas of no change were preserved across the maps for consistency. Despite the value of the maps produced, the method is very time-consuming and limited to the single-date reference of the orthophotos. From 2015 onwards, a new approach was adopted for map production. Photo-interpretation of orthophoto maps is still the basis of mapping, but assisted by products derived from satellite data. The goals are three-fold: (i) cut time production, (ii) increase map accuracy, and (iii) further detail the nomenclature. The last map published (COS 2015) benefited from change detection and classification analyses of Landsat data, namely for guiding the photo-interpretation in forest, shrublands, and mapping annual agriculture. Time production and map error have been reduced comparing to previous maps. The new 2018 map, currently in production, further explores this approach. Landsat 8 time series of 2015–2018 are used for change detection in vegetation based on NDVI differencing, thresholding and clustering. Sentinel-2 time series of 2017–2018 are used to classify Autumn/Winter crops and Spring/Summer crops based on NDVI temporal profiles and classification rules. Benefits and pitfalls of the new mapping approach are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document