species distributions
Recently Published Documents


TOTAL DOCUMENTS

883
(FIVE YEARS 206)

H-INDEX

91
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Hitoshi Araki ◽  
Takashi Kanbe ◽  
Hiroki Yamanaka ◽  
Yuki Minegishi ◽  
Noriyuki Koizumi

Data in Brief ◽  
2022 ◽  
pp. 107821
Author(s):  
Betsy Barber-O'Malley ◽  
Géraldine Lassalle ◽  
Patrick Lambert ◽  
Eric Quinton

Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 57
Author(s):  
Tomé Neves ◽  
Luís Borda-de-Água ◽  
Maria da Luz Mathias ◽  
Joaquim T. Tapisso

It is known that species’ distributions are influenced by several ecological factors. Nonetheless, the geographical scale upon which the influence of these factors is perceived is largely undefined. We assessed the importance of competition in regulating the distributional limits of species at large geographical scales. We focus on species with similar diets, the European Soricidae shrews, and how interspecific competition changes along climatic gradients. We used presence data for the seven most widespread terrestrial species of Soricidae in Europe, gathered from GBIF, European museums, and climate data from WorldClim. We made use of two Joint Species Distribution Models to analyse the correlations between species’ presences, aiming to understand the distinct roles of climate and competition in shaping species’ distributions. Our results support three key conclusions: (i) climate alone does not explain all species’ distributions at large scales; (ii) negative interactions, such as competition, seem to play a strong role in defining species’ range limits, even at large scales; and (iii) the impact of competition on a species’ distribution varies along a climatic gradient, becoming stronger at the climatic extremes. Our conclusions support previous research, highlighting the importance of considering biotic interactions when studying species’ distributions, regardless of geographical scale.


Hydrobiology ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 47-75
Author(s):  
Nuno Gomes ◽  
Dimítri A. Costa ◽  
Harold Cantallo ◽  
Carlos Antunes

Crustaceans (Arthropoda) are a diverse and abundant group with chitinous exoskeleton, living on coastal/estuarine environments, at community invertebrate fauna. A survey on the species of some crustacean groups found on the Minho River estuary (international section) in the Iberian Peninsula, is presented with specimens collected through glass eel fishing bycatch, grab sampler, trammel net, beam trawl and fyke net sampling methods. A total of 98 specimens were examined belonging to 7 orders, 21 genera and 23 species (17 new records from Minho River, including one for Portugal). Brief diagnosis, ecological notes, species distributions and figures are provided intending to present taxonomic support on future projects in this region.


2021 ◽  
Vol 784 ◽  
pp. 1-66
Author(s):  
Amanda Martins Dias ◽  
John Edwin Lattke

The taxonomy of the giant ants of the genus Dinoponera is revised based on female and male morphology. Eight species are recognized. Dinoponera nicinha sp. nov., from Amazonas and Rondônia, Brazil, is described and D. grandis (Guérin-Méneville, 1838) is revived. The species D. australis Emery, 1901 and D. snellingi Lenhart, Dash & Mackay, 2013, plus the subspecies D. australis bucki Borgmeier, 1937 and D. australis nigricolor Borgmeier, 1937 are synonymized under D. grandis sp. rev. An unnamed and unidentified male is reported. In general, male morphology has greater and more discrete variation than in females, but they are scarce in museum collections. Species distributions are updated and illustrated, the genus ranging from southern Colombia to northern Argentina, with no reliable records from the Guiana Shield and all nominal species occurring in Brazil.  Intraspecific variation and natural history are discussed. New illustrated identification keys are provided for both sexes. Future studies should address the collection of fresh specimens for molecular work and to assess the conservation status of several species and populations.


2021 ◽  
Vol 130 (23) ◽  
pp. 233302
Author(s):  
Seth J. Thompson ◽  
Shawn C. Farnell ◽  
Casey C. Farnell ◽  
Cody C. Farnell ◽  
Thomas M. Andreano ◽  
...  

2021 ◽  
Author(s):  
◽  
Christopher Woolley

<p>Globally, biodiversity is in crisis. One contributing factor is the rapid urbanisation of the world’s population. Land cover change associated with urbanisation radically alters ecosystems, making them uninhabitable for many species. Additionally, people who live in cities often have reduced contact with nature and there are fears that a lack of nature experience may diminish concern for the environment and biodiversity among urbanites. For these reasons, people in cities are increasingly being encouraged and empowered to reduce environmental impacts and connect with nature through urban restoration and backyard conservation. Internationally, lizards are a common feature of urban biodiversity but in New Zealand, where many species are threatened, little is known about populations of endemic skinks and geckos in cities. In order to effectively manage urban lizard populations, greater knowledge is needed about where and how lizards are surviving in cities, and what potential exists for their restoration. I investigated species diversity and abundance of lizards in New Zealand cities, making comparisons with historical species distributions to inform urban restoration and investigating the potential role that participatory conservation might play in their protection.  To collate current knowledge about past and present distributions of urban-dwelling lizards, I reviewed records for six New Zealand cities from published and unpublished literature and databases. Little research was identified from cities and the majority of lizard records were of one-off sightings, or surveys related to salvage or biosecurity operations. Comparing current species records with historical species distributions, it found that the diversity of lizards in all of the cities has declined dramatically since human colonisation.  To begin to fill the identified knowledge gap and to provide baselines for future monitoring, I carried out skink surveys in four cities and trialled a citizen science project that collected public sighting records from residential backyards. Surveys undertaken in urban habitats captured four species of endemic skink: Oligosoma aeneum in Hamilton, O. polychroma, O. aeneum and O. ornatum in Wellington, O. polychroma in Nelson, and O. aff. polychroma Clade 5 in Dunedin. Site occupancy and number of captures were highly variable among the species and cities, with a very high proportion of sites occupied by skinks in Nelson and Wellington compared with Hamilton and Dunedin. Modelling showed O. polychroma catch per unit effort was positively related to rat tracking rates when grass cover was low but showed a negative relationship when grass cover was high. Higher proportions of urban land cover within 500 m were negatively associated with body condition.  The public sightings website gathered more than 100 records from around the Wellington region over one summer, suggesting citizen science may be a cost-effective solution for building knowledge about lizards in residential gardens that are otherwise difficult to survey. While skink sightings were reported from all over the city, gecko sightings appeared in clusters. Compared with a random sample of street addresses, both skink and gecko sightings were more common closer to forest land cover, but only skink sightings were more common in backyards that were north facing.  Finally, I administered a questionnaire survey to understand how socio- demographic characteristics relate to willingness to engage in three different pro-conservation activities that might benefit lizards: pest mammal trapping, biodiversity monitoring and pest mammal monitoring. Public willingness to engage in all three activities was positively related to respondents’ nature relatedness and nature dosage, while only the two monitoring activities were positively related to education. The relationship between willingness and nature relatedness was weaker for pest trapping than it was for the two monitoring activities, suggesting that willingness to trap may be determined by factors other than environmental concern.  Native lizards are an important component of New Zealand’s urban biodiversity. Despite cities having lost significant proportions of their original lizard fauna, a wide variety of habitats in cities still support numerous species. Some of these species seem well adapted to cope with the challenges of urban living, while further research is required to understand whether populations of other species are stable or in decline. To ensure the persistence of lizards in cities, further surveys using a variety of methods should be undertaken to assess lizard diversity and abundance in urban habitats and understand population trends of rare and sparsely distributed species. Public sightings may provide a useful starting point for assessing distribution patterns and allowing the targeting of surveys. In the future, through urban restoration, cities may offer opportunities to conserve a larger proportion of endemic species by reintroducing species that have become regionally extinct.</p>


2021 ◽  
Author(s):  
◽  
Christopher Woolley

<p>Globally, biodiversity is in crisis. One contributing factor is the rapid urbanisation of the world’s population. Land cover change associated with urbanisation radically alters ecosystems, making them uninhabitable for many species. Additionally, people who live in cities often have reduced contact with nature and there are fears that a lack of nature experience may diminish concern for the environment and biodiversity among urbanites. For these reasons, people in cities are increasingly being encouraged and empowered to reduce environmental impacts and connect with nature through urban restoration and backyard conservation. Internationally, lizards are a common feature of urban biodiversity but in New Zealand, where many species are threatened, little is known about populations of endemic skinks and geckos in cities. In order to effectively manage urban lizard populations, greater knowledge is needed about where and how lizards are surviving in cities, and what potential exists for their restoration. I investigated species diversity and abundance of lizards in New Zealand cities, making comparisons with historical species distributions to inform urban restoration and investigating the potential role that participatory conservation might play in their protection.  To collate current knowledge about past and present distributions of urban-dwelling lizards, I reviewed records for six New Zealand cities from published and unpublished literature and databases. Little research was identified from cities and the majority of lizard records were of one-off sightings, or surveys related to salvage or biosecurity operations. Comparing current species records with historical species distributions, it found that the diversity of lizards in all of the cities has declined dramatically since human colonisation.  To begin to fill the identified knowledge gap and to provide baselines for future monitoring, I carried out skink surveys in four cities and trialled a citizen science project that collected public sighting records from residential backyards. Surveys undertaken in urban habitats captured four species of endemic skink: Oligosoma aeneum in Hamilton, O. polychroma, O. aeneum and O. ornatum in Wellington, O. polychroma in Nelson, and O. aff. polychroma Clade 5 in Dunedin. Site occupancy and number of captures were highly variable among the species and cities, with a very high proportion of sites occupied by skinks in Nelson and Wellington compared with Hamilton and Dunedin. Modelling showed O. polychroma catch per unit effort was positively related to rat tracking rates when grass cover was low but showed a negative relationship when grass cover was high. Higher proportions of urban land cover within 500 m were negatively associated with body condition.  The public sightings website gathered more than 100 records from around the Wellington region over one summer, suggesting citizen science may be a cost-effective solution for building knowledge about lizards in residential gardens that are otherwise difficult to survey. While skink sightings were reported from all over the city, gecko sightings appeared in clusters. Compared with a random sample of street addresses, both skink and gecko sightings were more common closer to forest land cover, but only skink sightings were more common in backyards that were north facing.  Finally, I administered a questionnaire survey to understand how socio- demographic characteristics relate to willingness to engage in three different pro-conservation activities that might benefit lizards: pest mammal trapping, biodiversity monitoring and pest mammal monitoring. Public willingness to engage in all three activities was positively related to respondents’ nature relatedness and nature dosage, while only the two monitoring activities were positively related to education. The relationship between willingness and nature relatedness was weaker for pest trapping than it was for the two monitoring activities, suggesting that willingness to trap may be determined by factors other than environmental concern.  Native lizards are an important component of New Zealand’s urban biodiversity. Despite cities having lost significant proportions of their original lizard fauna, a wide variety of habitats in cities still support numerous species. Some of these species seem well adapted to cope with the challenges of urban living, while further research is required to understand whether populations of other species are stable or in decline. To ensure the persistence of lizards in cities, further surveys using a variety of methods should be undertaken to assess lizard diversity and abundance in urban habitats and understand population trends of rare and sparsely distributed species. Public sightings may provide a useful starting point for assessing distribution patterns and allowing the targeting of surveys. In the future, through urban restoration, cities may offer opportunities to conserve a larger proportion of endemic species by reintroducing species that have become regionally extinct.</p>


Sign in / Sign up

Export Citation Format

Share Document