A Novel Approach to the Unsupervised Update of Land-Cover Maps by Classification of Time Series of Multispectral Images

2019 ◽  
Vol 57 (7) ◽  
pp. 4259-4277 ◽  
Author(s):  
Claudia Paris ◽  
Lorenzo Bruzzone ◽  
Diego Fernandez-Prieto
2020 ◽  
Vol 12 (15) ◽  
pp. 2411 ◽  
Author(s):  
Thanh Noi Phan ◽  
Verena Kuch ◽  
Lukas W. Lehnert

Land cover information plays a vital role in many aspects of life, from scientific and economic to political. Accurate information about land cover affects the accuracy of all subsequent applications, therefore accurate and timely land cover information is in high demand. In land cover classification studies over the past decade, higher accuracies were produced when using time series satellite images than when using single date images. Recently, the availability of the Google Earth Engine (GEE), a cloud-based computing platform, has gained the attention of remote sensing based applications where temporal aggregation methods derived from time series images are widely applied (i.e., the use the metrics such as mean or median), instead of time series images. In GEE, many studies simply select as many images as possible to fill gaps without concerning how different year/season images might affect the classification accuracy. This study aims to analyze the effect of different composition methods, as well as different input images, on the classification results. We use Landsat 8 surface reflectance (L8sr) data with eight different combination strategies to produce and evaluate land cover maps for a study area in Mongolia. We implemented the experiment on the GEE platform with a widely applied algorithm, the Random Forest (RF) classifier. Our results show that all the eight datasets produced moderately to highly accurate land cover maps, with overall accuracy over 84.31%. Among the eight datasets, two time series datasets of summer scenes (images from 1 June to 30 September) produced the highest accuracy (89.80% and 89.70%), followed by the median composite of the same input images (88.74%). The difference between these three classifications was not significant based on the McNemar test (p > 0.05). However, significant difference (p < 0.05) was observed for all other pairs involving one of these three datasets. The results indicate that temporal aggregation (e.g., median) is a promising method, which not only significantly reduces data volume (resulting in an easier and faster analysis) but also produces an equally high accuracy as time series data. The spatial consistency among the classification results was relatively low compared to the general high accuracy, showing that the selection of the dataset used in any classification on GEE is an important and crucial step, because the input images for the composition play an essential role in land cover classification, particularly with snowy, cloudy and expansive areas like Mongolia.


2020 ◽  
Vol 27 (16) ◽  
pp. 20309-20320
Author(s):  
Shahzad Ali ◽  
Malak Henchiri ◽  
Zhang Sha ◽  
Kalisa Wilson ◽  
Bai Yun ◽  
...  

Author(s):  
H. Costa ◽  
P. Benevides ◽  
F. Marcelino ◽  
M. Caetano

Abstract. A series of five land cover maps, widely known as COS (Carta de Uso e Ocupação do Solo), have been produced since 1990 for mainland Portugal. Previous to 2015, all maps were produced through photo-interpretation of orthophotos. Land cover and land use changes were detected through comparison of previous and recent orthophotos, which were used for map updating, thereby producing a new map. The remaining areas of no change were preserved across the maps for consistency. Despite the value of the maps produced, the method is very time-consuming and limited to the single-date reference of the orthophotos. From 2015 onwards, a new approach was adopted for map production. Photo-interpretation of orthophoto maps is still the basis of mapping, but assisted by products derived from satellite data. The goals are three-fold: (i) cut time production, (ii) increase map accuracy, and (iii) further detail the nomenclature. The last map published (COS 2015) benefited from change detection and classification analyses of Landsat data, namely for guiding the photo-interpretation in forest, shrublands, and mapping annual agriculture. Time production and map error have been reduced comparing to previous maps. The new 2018 map, currently in production, further explores this approach. Landsat 8 time series of 2015–2018 are used for change detection in vegetation based on NDVI differencing, thresholding and clustering. Sentinel-2 time series of 2017–2018 are used to classify Autumn/Winter crops and Spring/Summer crops based on NDVI temporal profiles and classification rules. Benefits and pitfalls of the new mapping approach are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document