Escherichia coli Type 1 Pili

Author(s):  
Paul E. Orndorff
Keyword(s):  
2007 ◽  
Vol 2007 (Fall) ◽  
Author(s):  
Rudi Glockshuber
Keyword(s):  

2005 ◽  
Vol 187 (22) ◽  
pp. 7680-7686 ◽  
Author(s):  
Sheryl S. Justice ◽  
David A. Hunstad ◽  
Jill Reiss Harper ◽  
Amy R. Duguay ◽  
Jerome S. Pinkner ◽  
...  

ABSTRACT In Escherichia coli, FkpA, PpiA, PpiD, and SurA are the four known periplasmic cis-trans prolyl isomerases. These isomerases facilitate proper protein folding by increasing the rate of transition of proline residues between the cis and trans states. Genetic inactivation of all four periplasmic isomerases resulted in a viable strain that exhibited a decreased growth rate and increased susceptibility to certain antibiotics. Levels of the outer membrane proteins LamB and OmpA in the quadruple mutant were indistinguishable from those in the surA single mutant. In addition, expression of P and type 1 pili (adhesive organelles produced by uropathogenic strains of E. coli and assembled by the chaperone/usher pathway) were severely diminished in the absence of the four periplasmic isomerases. Maturation of the usher was significantly impaired in the outer membranes of strains devoid of all four periplasmic isomerases, resulting in a defect in pilus assembly. Moreover, this defect in pilus assembly and usher stability could be attributed to the absence of SurA. The data presented here suggest that the four periplasmic isomerases are not essential for growth under laboratory conditions but may have significant roles in survival in environmental and pathogenic niches, as indicated by the effect on pilus production.


1998 ◽  
Vol 160 (4) ◽  
pp. 1603-1604
Author(s):  
Y. Mizunoe ◽  
T. Matsumoto ◽  
M. Sakumoto ◽  
S. Kubo ◽  
O. Mochida ◽  
...  

2007 ◽  
Vol 189 (13) ◽  
pp. 4860-4871 ◽  
Author(s):  
Marie-Agnès Bringer ◽  
Nathalie Rolhion ◽  
Anne-Lise Glasser ◽  
Arlette Darfeuille-Michaud

ABSTRACT Adherent-invasive Escherichia coli (AIEC) isolated from Crohn's disease patients is able to adhere to and invade intestinal epithelial cells and to replicate in mature phagolysosomes within macrophages. Here, we show that the dsbA gene, encoding a periplasmic oxidoreductase, was required for AIEC strain LF82 to adhere to intestinal epithelial cells and to survive within macrophages. The LF82-ΔdsbA mutant did not express flagella and, probably as a consequence of this, did not express type 1 pili. The role of DsbA in adhesion is restricted to the loss of flagella and type 1 pili, as forced contact between bacteria and cells and induced expression of type 1 pili restored the wild-type phenotype. In contrast, the dsbA gene is essential for AIEC LF82 bacteria to survive within macrophages, irrespective of the loss of flagella and type 1 pilus expression, and the survival ability of LF82-ΔdsbA was as low as that of the nonpathogenic E. coli K-12, which was efficiently killed by macrophages. We also provide evidence that the dsbA gene is needed for LF82 bacteria to grow and survive in an acidic and nutrient-poor medium that partly mimics the harsh environment of the phagocytic vacuole. In addition, under such stress conditions dsbA transcription is highly up-regulated. Finally, the CpxRA signaling pathway does not play a role in regulation of dsbA expression in AIEC LF82 bacteria under conditions similar to those of mature phagolysosomes.


2018 ◽  
Author(s):  
Colin W. Russell ◽  
Rashmi Sukumaran ◽  
Lu Ting Liow ◽  
Balamurugan Periaswamy ◽  
Shazmina Rafee ◽  
...  

Most urinary tract infections (UTIs) are caused by uropathogenic Escherichia coli (UPEC), which depend on an extracellular organelle (Type 1 pili) for adherence to bladder cells during infection. Type 1 pilus expression is partially regulated by inversion of a piece of DNA referred to as fimS, which contains the promoter for the fim operon encoding Type 1 pili. fimS inversion is regulated by up to five recombinases collectively known as Fim recombinases. These Fim recombinases are currently known to regulate two other switches: the ipuS and hyxS switches. A long-standing question has been whether the Fim recombinases regulate the inversion of other switches, perhaps to coordinate expression for adhesion or virulence. We answered this question using whole genome sequencing with a newly developed algorithm (Structural Variation detection using Relative Entropy, SVRE) for calling structural variations using paired-end short read sequencing. SVRE identified all of the previously known switches, refining the specificity of which recombinases act at which switches. Strikingly, we found no new inversions that were mediated by the Fim recombinases. We conclude that the Fim recombinases are each highly specific for a small number of switches. We hypothesize that the unlinked Fim recombinases have been recruited to regulate fimS, and fimS only, as a secondary locus; this further implies that regulation of Type 1 pilus expression (and its role in gastrointestinal and/or genitourinary colonization) is important enough, on its own, to influence the evolution and maintenance of multiple additional genes within the accessory genome of E. coli.


Sign in / Sign up

Export Citation Format

Share Document