scholarly journals Characterization of the Biosynthesis Gene Cluster for the Pyrrole Polyether Antibiotic Calcimycin (A23187) inStreptomyces chartreusisNRRL 3882

2010 ◽  
Vol 55 (3) ◽  
pp. 974-982 ◽  
Author(s):  
Qiulin Wu ◽  
Jingdan Liang ◽  
Shuangjun Lin ◽  
Xiufen Zhou ◽  
Linquan Bai ◽  
...  

ABSTRACTThe pyrrole polyether antibiotic calcimycin (A23187) is a rare ionophore that is specific for divalent cations. It is widely used as a biochemical and pharmacological tool because of its multiple, unique biological effects. Here we report on the cloning, sequencing, and mutational analysis of the 64-kb biosynthetic gene cluster fromStreptomyces chartreusisNRRL 3882. Gene replacements confirmed the identity of the gene cluster, andin silicoanalysis of the DNA sequence revealed 27 potential genes, including 3 genes for the biosynthesis of the α-ketopyrrole moiety, 5 genes that encode modular type I polyketide synthases for the biosynthesis of the spiroketal ring, 4 genes for the biosynthesis of 3-hydroxyanthranilic acid, anN-methyltransferase tailoring gene, a resistance gene, a type II thioesterase gene, 3 regulatory genes, 4 genes with other functions, and 5 genes of unknown function. We propose a pathway for the biosynthesis of calcimycin and assign the genes to the biosynthesis steps. Our findings set the stage for producing much desired calcimycin derivatives using genetic modification instead of chemical synthesis.

2015 ◽  
Vol 81 (17) ◽  
pp. 5820-5831 ◽  
Author(s):  
Jean Franco Castro ◽  
Valeria Razmilic ◽  
Juan Pablo Gomez-Escribano ◽  
Barbara Andrews ◽  
Juan A. Asenjo ◽  
...  

ABSTRACTStreptomyces leeuwenhoekii, isolated from the hyperarid Atacama Desert, produces the new ansamycin-like compounds chaxamycins A to D, which possess potent antibacterial activity and moderate antiproliferative activity. We report the development of genetic tools to manipulateS. leeuwenhoekiiand the identification and partial characterization of the 80.2-kb chaxamycin biosynthesis gene cluster, which was achieved by both mutational analysis in the natural producer and heterologous expression inStreptomyces coelicolorA3(2) strain M1152. Restoration of chaxamycin production in a nonproducing ΔcxmKmutant (cxmKencodes 3-amino-5-hydroxybenzoic acid [AHBA] synthase) was achieved by supplementing the growth medium with AHBA, suggesting that mutasynthesis may be a viable approach for the generation of novel chaxamycin derivatives.


2000 ◽  
Vol 182 (13) ◽  
pp. 3850-3853 ◽  
Author(s):  
Laure Hannibal ◽  
Jean Lorquin ◽  
Nicolas Angles D'Ortoli ◽  
Nelly Garcia ◽  
Clemence Chaintreuil ◽  
...  

ABSTRACT A carotenoid biosynthesis gene cluster involved in canthaxanthin production was isolated from the photosyntheticBradyrhizobium sp. strain ORS278. This cluster includes five genes identified as crtE, crtY,crtI, crtB, and crtW that are organized in at least two operons. The functional assignment of each open reading frame was confirmed by complementation studies.


2009 ◽  
Vol 192 (2) ◽  
pp. 426-435 ◽  
Author(s):  
Silke I. Patzer ◽  
Volkmar Braun

ABSTRACT The main siderophores produced by streptomycetes are desferrioxamines. Here we show that Streptomyces sp. ATCC 700974 and several Streptomyces griseus strains, in addition, synthesize a hitherto unknown siderophore with a catechol-peptide structure, named griseobactin. The production is repressed by iron. We sequenced a 26-kb DNA region comprising a siderophore biosynthetic gene cluster encoding proteins similar to DhbABCEFG, which are involved in the biosynthesis of 2,3-dihydroxybenzoate (DHBA) and in the incorporation of DHBA into siderophores via a nonribosomal peptide synthetase. Adjacent to the biosynthesis genes are genes that encode proteins for the secretion, uptake, and degradation of siderophores. To correlate the gene cluster with griseobactin synthesis, the dhb genes in ATCC 700974 were disrupted. The resulting mutants no longer synthesized DHBA and griseobactin; production of both was restored by complementation with the dhb genes. Heterologous expression of the dhb genes or of the entire griseobactin biosynthesis gene cluster in the catechol-negative strain Streptomyces lividans TK23 resulted in the synthesis and secretion of DHBA or griseobactin, respectively, suggesting that these genes are sufficient for DHBA and griseobactin biosynthesis. Griseobactin was purified and characterized; its structure is consistent with a cyclic and, to a lesser extent, linear form of the trimeric ester of 2,3-dihydroxybenzoyl-arginyl-threonine complexed with aluminum under iron-limiting conditions. This is the first report identifying the gene cluster for the biosynthesis of DHBA and a catechol siderophore in Streptomyces.


2017 ◽  
Vol 101 (20) ◽  
pp. 7589-7602 ◽  
Author(s):  
Yang Liu ◽  
Meng Li ◽  
Huiyan Mu ◽  
Shuting Song ◽  
Ying Zhang ◽  
...  

2003 ◽  
Vol 10 (5) ◽  
pp. 419-430 ◽  
Author(s):  
A.Kassem El-Sayed ◽  
Joanne Hothersall ◽  
Sian M. Cooper ◽  
Elton Stephens ◽  
Thomas J. Simpson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document