scholarly journals Design and Profiling of GS-9148, a Novel Nucleotide Analog Active against Nucleoside-Resistant Variants of Human Immunodeficiency Virus Type 1, and Its Orally Bioavailable Phosphonoamidate Prodrug, GS-9131

2007 ◽  
Vol 52 (2) ◽  
pp. 655-665 ◽  
Author(s):  
Tomas Cihlar ◽  
Adrian S. Ray ◽  
Constantine G. Boojamra ◽  
Lijun Zhang ◽  
Hon Hui ◽  
...  

ABSTRACT GS-9148 [(5-(6-amino-purin-9-yl)-4-fluoro-2,5-dihydro-furan-2-yloxymethyl)phosphonic acid] is a novel ribose-modified human immunodeficiency virus type 1 (HIV-1) nucleotide reverse transcriptase (RT) inhibitor (NRTI) selected from a series of nucleoside phosphonate analogs for its favorable in vitro biological properties including (i) a low potential for mitochondrial toxicity, (ii) a minimal cytotoxicity in renal proximal tubule cells and other cell types, (iii) synergy in combination with other antiretrovirals, and (iv) a unique resistance profile against multiple NRTI-resistant HIV-1 strains. Notably, antiviral resistance analysis indicated that neither the K65R, L74V, or M184V RT mutation nor their combinations had any effect on the antiretroviral activity of GS-9148. Viruses carrying four or more thymidine analog mutations showed a substantially smaller change in GS-9148 activity relative to that observed with most marketed NRTIs. GS-9131, an ethylalaninyl phosphonoamidate prodrug designed to maximize the intracellular delivery of GS-9148, is a potent inhibitor of multiple subtypes of HIV-1 clinical isolates, with a mean 50% effective concentration of 37 nM. Inside cells, GS-9131 is readily hydrolyzed to GS-9148, which is further phosphorylated to its active diphosphate metabolite (A. S. Ray, J. E. Vela, C. G. Boojamra, L. Zhang, H. Hui, C. Callebaut, K. Stray, K.-Y. Lin, Y. Gao, R. L. Mackman, and T. Cihlar, Antimicrob. Agents Chemother. 52:648-654, 2008). GS-9148 diphosphate acts as a competitive inhibitor of RT with respect to dATP (Ki = 0.8 μM) and exhibits low inhibitory potency against host polymerases including DNA polymerase γ. Oral administration of GS-9131 to beagle dogs at a dose of 3 mg/kg of body weight resulted in high and persistent levels of GS-9148 diphosphate in peripheral blood mononuclear cells (with a maximum intracellular concentration of >9 μM and a half-life of >24 h). This favorable preclinical profile makes GS-9131 an attractive clinical development candidate for the treatment of patients infected with NRTI-resistant HIV.

2002 ◽  
Vol 76 (6) ◽  
pp. 3015-3022 ◽  
Author(s):  
Jun-ichiro Suzuki ◽  
Naoko Miyano-Kurosaki ◽  
Tomoyuki Kuwasaki ◽  
Hiroaki Takeuchi ◽  
Gota Kawai ◽  
...  

ABSTRACT An oligonucleotide with a dimeric hairpin guanosine quadruplex (basket type structure) (dG3T4G3-s), containing phosphorothioate groups, was able to inhibit human immunodeficiency virus type 1 (HIV-1)-induced syncytium formation and virus production (as measured by p24 core antigen expression) in peripheral blood mononuclear cells. This oligonucleotide lacks primary sequence homology with the complementary (antisense) sequences to the HIV-1 genome. Furthermore, this oligonucleotide may have increased nuclease resistance. The activity of this oligonucleotide was increased when the phosphodiester backbone was replaced with a phosphorothioate backbone. In vivo results showed that dG3T4G3-s was capable of blocking the interaction between gp120 and CD4. We also found that dG3T4G3-s specifically inhibits the entry of T-cell line-tropic HIV-1 into cells. This compound is a viable candidate for evaluation as a therapeutic agent against HIV-1 in humans.


2006 ◽  
Vol 80 (15) ◽  
pp. 7765-7768 ◽  
Author(s):  
Hongbing Liu ◽  
Eugene C. Dow ◽  
Reetakshi Arora ◽  
Jason T. Kimata ◽  
Lara M. Bull ◽  
...  

ABSTRACT Previous analyses of human immunodeficiency virus type 1 (HIV-1) integration sites generated in infections in vitro or in patients in whom viral replication was repressed by antiviral therapy have demonstrated a preference for integration within protein-coding genes. We analyzed integration sites in peripheral blood mononuclear cells (PBMCs), spleen, lymph node, and cerebral cortex from patients with untreated HIV-1 infections. The great majority of integration sites in each tissue were within genes. Statistical analyses of the frequencies of integration in genes in PBMCs and lymph tissue demonstrated a strong preference for integration within genes. Although the sample size for brain tissue was too small to demonstrate a clear statistical preference for integration in genes, four of the five integration sites identified in brain were within genes. Taken together, our data indicate that HIV-1 preferentially integrates within genes during untreated infection.


1999 ◽  
Vol 43 (3) ◽  
pp. 492-497 ◽  
Author(s):  
Mika Okamoto ◽  
Takashi Okamoto ◽  
Masanori Baba

ABSTRACT 8 - Difluoromethoxy - 1 - ethyl - 6 - fluoro - 1,4 - dihydro - 7 - [4 - (2 - methoxyphenyl) - 1 - piperazinyl] - 4 - oxoquinoline - 3 - carboxylic acid (K-12) has recently been identified as a potent and selective inhibitor of human immunodeficiency virus type 1 (HIV-1) transcription. In this study, we examined several combinations of K-12 and other antiretroviral agents for their inhibitory effects on HIV-1 replication in acutely and chronically infected cell cultures. Combinations of K-12 and a reverse transcriptase (RT) inhibitor, either zidovudine, lamivudine, or nevirapine, synergistically inhibited HIV-1 replication in acutely infected MT-4 cells. The combination of K-12 and the protease inhibitor nelfinavir (NFV) also synergistically inhibited HIV-1, whereas the synergism of this combination was weaker than that of the combinations with the RT inhibitors. K-12 did not enhance the cytotoxicities of RT and protease inhibitors. Synergism of the combinations was also observed in acutely infected peripheral blood mononuclear cells. The combination of K-12 and cepharanthine, a nuclear factor κB inhibitor, synergistically inhibited HIV-1 production in tumor necrosis factor alpha-stimulated U1 cells, a promonocytic cell line chronically infected with the virus. In contrast, additive inhibition was observed for the combination of K-12 and NFV. These results indicate that the combinations of K-12 and clinically available antiretroviral agents may have potential as chemotherapeutic modalities for the treatment of HIV-1 infection.


PEDIATRICS ◽  
1991 ◽  
Vol 87 (6) ◽  
pp. 921-925
Author(s):  
Isaac Srugo ◽  
Philip A. Brunell ◽  
Nickolas V. Chelyapov ◽  
Victor lsraele ◽  
David D. Ho ◽  
...  

The human immunodeficiency virus type 1 (HIV-1) was isolated from the plasma and peripheral blood mononuclear cells (PBMCs) from each of 21 infected children. The mean titers in plasma were 7 and 165 tissue culture-infective doses per milliliter in 9 children with asymptomatic (P-1) and 12 with symptomatic (P-2) infection, respectively (P = .0013). Significantly higher viral titers were found in PBMCs obtained from P-2 compared with P-1 children: 1920 vs 25 tissue culture-infective doses per 106 PBMC (P = .0018). In symptomatic patients at least 1 in 520 circulating mononuclear cells harbored HIV-1. No correlation was found between the viral burden and CD4+ lymphocyte counts. A decrease in the HIV-1 titers was noted both in PBMCs and plasma of symptomatic patients treated with zidovudine for 2 to 7 months. It is concluded that symptomatic children harbor a higher amount of the virus in plasma and PBMCs than asymptomatic children. Zidovudine treatment for 2 months or more decreased the amount of HIV-1 in PBMCs and plasma.


2006 ◽  
Vol 80 (7) ◽  
pp. 3684-3691 ◽  
Author(s):  
Lachlan Gray ◽  
Melissa J. Churchill ◽  
Niamh Keane ◽  
Jasminka Sterjovski ◽  
Anne M. Ellett ◽  
...  

ABSTRACT We characterized human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) isolated from two HIV-1-infected CCR5Δ32 homozygotes. Envs from both subjects used CCR5 and CXCR4 for entry into transfected cells. Most R5X4 Envs were lymphocyte-tropic and used CXCR4 exclusively for entry into peripheral blood mononuclear cells (PBMC), but a subset was dually lymphocyte- and macrophage-tropic and used either CCR5 or CXCR4 for entry into PBMC and monocyte-derived macrophages. The persistence of CCR5-using HIV-1 in two CCR5Δ32 homozygotes suggests the conserved CCR5 binding domain of Env is highly stable and provides new mechanistic insights important for HIV-1 transmission and persistence.


2000 ◽  
Vol 7 (1) ◽  
pp. 96-100 ◽  
Author(s):  
Madhavan P. N. Nair ◽  
Kailash C. Chadha ◽  
Ross G. Hewitt ◽  
Supriya Mahajan ◽  
Ann Sweet ◽  
...  

ABSTRACT Earlier studies have supported a significant role for cocaine in the susceptibility to and the progression of human immunodeficiency virus type 1 (HIV-1) infection. Recently, several unique HIV-1 entry coreceptors (e.g., CCR5 and CCR3) and a trio of HIV-1-specific suppressor chemokines, namely, RANTES (regulated-upon-activation T expressed and secreted), macrophage inflammatory protein 1α (MIP-1α) and MIP-1β, were identified. Although cocaine has been linked to the immunopathogenesis of HIV-1 infection, the corresponding cellular and molecular mechanism(s) have not been well defined. We hypothesize that cocaine mediates these pathologic effects through the downregulation of HIV-1-suppressing chemokines and/or upregulating HIV-1 entry coreceptors in HIV-1-infected subjects, resulting in disease progression to AIDS. Our results show that cocaine selectively downregulates endogenous MIP-1β secretion by normal peripheral blood mononuclear cells (PBMC), while cocaine did not affect the MIP-1β production by PBMC from AIDS patients. Cocaine also selectively suppresses lipopolysaccharide-induced MIP-1β production by PBMC from HIV-infected patients. Further, cocaine significantly downregulates endogenous MIP-1β gene expression, while it upregulates HIV-1 entry coreceptor CCR5 by normal PBMC. These studies suggests a role for cocaine as a cofactor in the pathogenesis of HIV infection and support the premise that cocaine increases susceptibility to and progression of HIV-1 infection by inhibiting the synthesis of HIV-1 protective chemokines and/or upregulating the HIV-1 entry coreceptor, CCR5.


2005 ◽  
Vol 49 (8) ◽  
pp. 3474-3482 ◽  
Author(s):  
Katsunori Takashima ◽  
Hiroshi Miyake ◽  
Naoyuki Kanzaki ◽  
Yoshihiko Tagawa ◽  
Xin Wang ◽  
...  

ABSTRACT TAK-220 is a member of a novel class of chemokine receptor antagonists and is highly specific to CCR5, as determined by receptor binding and calcium mobilization assays. The compound selectively inhibited coreceptor-mediated entry of human immunodeficiency virus type 1 (HIV-1) into host cells and HIV-1 infection mediated by CCR5. TAK-220 inhibited the replication of six CCR5-using (R5) HIV-1 clinical isolates in peripheral blood mononuclear cells (PBMCs) with a mean 90% effective concentration of 13 nM. The anti-HIV-1 activity of TAK-220 was not affected by addition of high concentrations of human serum. It equally inhibited R5 HIV-1 replication in PBMCs obtained from eight different donors, irrespective of the levels of viral production. Furthermore, the anti-HIV-1 activity of TAK-220 was found to be subtype independent. TAK-220 did not induce CCR5 internalization but blocked the binding of two monoclonal antibodies that recognize the second extracellular loop of CCR5 in CCR5-expressing cells. These results suggest that TAK-220 selectively inhibits R5 HIV-1 replication by interfering with coreceptor-mediated entry of the virus into host cells. At a dose of 5 mg/kg of body weight, TAK-220 showed oral bioavailabilities of 9.5 and 28.9% in rats and monkeys, respectively. Thus, TAK-220 is a promising candidate for the treatment of HIV-1 infection.


2000 ◽  
Vol 38 (11) ◽  
pp. 4246-4248 ◽  
Author(s):  
Cécile L. Tremblay ◽  
Françoise Giguel ◽  
Debra P. Merrill ◽  
Johnson T. Wong ◽  
Eric Rosenberg ◽  
...  

Culture of autologous CD4 lymphocytes from peripheral blood mononuclear cells compared favorably with two other methods for the measurement of cell-associated human immunodeficiency virus type 1 (HIV-1). For subjects with undetectable HIV-1 RNA levels in plasma, there was a 10,000-fold range of cell-associated virus detected. This method provides a simple and reproducible means for monitoring cell-associated HIV-1.


1998 ◽  
Vol 72 (9) ◽  
pp. 7450-7458 ◽  
Author(s):  
Benhur Lee ◽  
Benjamin J. Doranz ◽  
Shalini Rana ◽  
Yanji Yi ◽  
Mario Mellado ◽  
...  

ABSTRACT The chemokine receptors CCR5 and CXCR4 are used by human immunodeficiency virus type 1 (HIV-1) in conjunction with CD4 to infect cells. In addition, some virus strains can use alternative chemokine receptors, including CCR2b and CCR3, for infection. A polymorphism inCCR2 (CCR2-V64I) is associated with a 2- to 4-year delay in the progression to AIDS. To investigate the mechanism of this protective effect, we studied the expression of CCR2b and CCR2b-V64I, their chemokine and HIV-1 coreceptor activities, and their effects on the expression and receptor activities of the major HIV-1 coreceptors. CCR2b and CCR2b-V64I were expressed at similar levels, and neither molecule affected the expression or coreceptor activity of CCR3, CCR5, or CXCR4 in cotransfected cell lines. Peripheral blood mononuclear cells (PBMCs) from CCR2-V64I heterozygotes had normal levels of CCR2b and CCR5 but slightly reduced levels of CXCR4. CCR2b and CCR2b-V64I functioned equally well as HIV-1 coreceptors, and CCR2-V64I PBMCs were permissive for HIV-1 infection regardless of viral tropism. The MCP-1-induced calcium mobilization mediated by CCR2b signaling was unaffected by the polymorphism, but MCP-1 signaling mediated by either CCR2b- or CCR2-V64I-encoded receptors resulted in heterologous desensitization (i.e., limiting the signal response of other receptors) of both CCR5 and CXCR4. The heterologous desensitization of CCR5 and CXCR4 signaling by bothCCR2 allele receptor types provides a mechanistic link that might help explain the in vivo effects of CCR2 gene variants on progression to AIDS as well as the reported antiviral activity of natural CCR2 ligands.


1999 ◽  
Vol 73 (9) ◽  
pp. 7368-7375 ◽  
Author(s):  
Martine Peeters ◽  
Florian Liegeois ◽  
Ndongo Torimiro ◽  
Anke Bourgeois ◽  
Eitel Mpoudi ◽  
...  

ABSTRACT A Cameroonian patient with antibodies reacting simultaneously to human immunodeficiency virus type 1 (HIV-1) group O- and group M-specific V3-loop peptides was identified. In order to confirm that this patient was coinfected with both viruses, PCRs with O- and M-specific discriminating primers corresponding to different regions of the genome were carried out with both primary lymphocyte DNA and the corresponding viral strains isolated from three consecutive patient samples. The PCR data suggested that this patient is coinfected with a group M virus and a recombinant M/O virus. Indeed, only type Mgag sequences could be amplified, while for theenv region, both type M and O sequences were amplified, from plasma or from DNA extracted from primary lymphocytes. Sequence analysis of a complete recombinant genome isolated from the second sample (97CA-MP645 virus isolate) revealed two intergroup breakpoints, one in the vpr gene and the second in the long terminal repeat region around the TATA box. Comparison of the type M sequences shared by the group M and the recombinant M/O viruses showed that these sequences were closely related, with only 3% genetic distance, suggesting that the M virus was one of the parental viruses. In this report we describe for the first time a recombination event in vivo between viruses belonging to two different groups, leading to a replicative virus. Recombination between strains with such distant lineages (65% overall homology) may contribute substantially to the emergence of new HIV-1 variants. We documented that this virus replicates well and became predominant in vitro. At this time, group O viruses represent a minority of the strains responsible for the HIV-1 pandemic. If such recombinant intergroup viruses gained better fitness, inducing changes in their biological properties compared to the parental group O virus, the prevalences of group O sequences could increase rapidly. This will have important implications for diagnosis of HIV-1 infections by serological and molecular tests, as well as for antiviral treatment.


Sign in / Sign up

Export Citation Format

Share Document