scholarly journals Baseline Hepatitis C Virus (HCV) NS3 Polymorphisms and Their Impact on Treatment Response in Clinical Studies of the HCV NS3 Protease Inhibitor Faldaprevir

2013 ◽  
Vol 58 (2) ◽  
pp. 698-705 ◽  
Author(s):  
Kristi L. Berger ◽  
Ibtissem Triki ◽  
Mireille Cartier ◽  
Martin Marquis ◽  
Marie-Josée Massariol ◽  
...  

ABSTRACTA challenge to the treatment of chronic hepatitis C with direct-acting antivirals is the emergence of drug-resistant hepatitis C virus (HCV) variants. HCV with preexisting polymorphisms that are associated with resistance to NS3/4A protease inhibitors have been detected in patients with chronic hepatitis C. We performed a comprehensive pooled analysis from phase 1b and phase 2 clinical studies of the HCV protease inhibitor faldaprevir to assess the population frequency of baseline protease inhibitor resistance-associated NS3 polymorphisms and their impact on response to faldaprevir treatment. A total of 980 baseline NS3 sequences were obtained (543 genotype 1b and 437 genotype 1a sequences). Substitutions associated with faldaprevir resistance (at amino acid positions 155 and 168) were rare (<1% of sequences) and did not compromise treatment response: in a phase 2 study in treatment-naive patients, six patients had faldaprevir resistance-associated polymorphisms at baseline, of whom five completed faldaprevir-based treatment and all five achieved a sustained virologic response 24 weeks after the end of treatment (SVR24). Among 13 clinically relevant amino acid positions associated with HCV protease resistance, the greatest heterogeneity was seen at NS3 codons 132 and 170 in genotype 1b, and the most common baseline substitution in genotype 1a was Q80K (99/437 [23%]). The presence of the Q80K variant did not reduce response rates to faldaprevir-based treatment. Across the three phase 2 studies, there was no significant difference in SVR24 rates between patients with genotype 1a Q80K HCV and those without Q80K HCV, whether treatment experienced (17% compared to 26%;P= 0.47) or treatment naive (62% compared to 66%;P= 0.72).

2012 ◽  
Vol 56 (7) ◽  
pp. 3670-3681 ◽  
Author(s):  
Fiona McPhee ◽  
Jacques Friborg ◽  
Steven Levine ◽  
Chaoqun Chen ◽  
Paul Falk ◽  
...  

ABSTRACTAsunaprevir (BMS-650032) is a potent hepatitis C virus (HCV) NS3 protease inhibitor demonstrating efficacy in alfa interferon-sparing, direct-acting antiviral dual-combination regimens (together with the NS5A replication complex inhibitor daclatasvir) in patients chronically infected with HCV genotype 1b. Here, we describe a comprehensivein vitrogenotypic and phenotypic analysis of asunaprevir-associated resistance against genotypes 1a and 1b using HCV replicons and patient samples obtained from clinical studies of short-term asunaprevir monotherapy. During genotype 1a resistance selection using HCV replicons, the primary NS3 protease substitutions identified were R155K, D168G, and I170T, which conferred low- to moderate-level asunaprevir resistance (5- to 21-fold) in transient-transfection susceptibility assays. For genotype 1b, a higher level of asunaprevir-associated resistance was observed at the same selection pressures, ranging from 170- to 400-fold relative to the wild-type control. The primary NS3 protease substitutions identified occurred predominantly at amino acid residue D168 (D168A/G/H/V/Y) and were associated with high-level asunaprevir resistance (16- to 280-fold) and impaired replication capacity. In asunaprevir single-ascending-dose and 3-day multiple-ascending-dose studies in HCV genotype 1a- or 1b-infected patients, the predominant pre-existing NS3 baseline polymorphism was NS3-Q80K. This substitution impacted initial virologic response rates in a single-ascending-dose study, but its effects after multiple doses were more ambiguous. Interestingly, for patient NS3 protease sequences containing Q80 and those containing K80, susceptibilities to asunaprevir were comparable when tested in an enzyme assay. No resistance-associated variants emerged in these clinical studies that significantly impacted susceptibility to asunaprevir. Importantly, asunaprevir-resistant replicons remained susceptible to an NS5A replication complex inhibitor, consistent with a role for asunaprevir in combination therapies.


Intervirology ◽  
2018 ◽  
Vol 61 (1) ◽  
pp. 1-8
Author(s):  
Deborah D’Aliberti ◽  
Irene Cacciola ◽  
Cristina Musolino ◽  
Giuseppina Raffa ◽  
Roberto Filomia ◽  
...  

2009 ◽  
Vol 84 (1) ◽  
pp. 482-491 ◽  
Author(s):  
Julie A. Lemm ◽  
Donald O'Boyle ◽  
Mengping Liu ◽  
Peter T. Nower ◽  
Richard Colonno ◽  
...  

ABSTRACT Using a cell-based replicon screen, we identified a class of compounds with a thiazolidinone core structure as inhibitors of hepatitis C virus (HCV) replication. The concentration of one such compound, BMS-824, that resulted in a 50% inhibition of HCV replicon replication was ∼5 nM, with a therapeutic index of >10,000. The compound showed good specificity for HCV, as it was not active against several other RNA and DNA viruses. Replicon cells resistant to BMS-824 were isolated, and mutations were identified. A combination of amino acid substitutions of leucine to valine at residue 31 (L31V) and glutamine to leucine at residue 54 (Q54L) in NS5A conferred resistance to this chemotype, as did a single substitution of tyrosine to histidine at amino acid 93 (Y93H) in NS5A. To further explore the region(s) of NS5A involved in inhibitor sensitivity, genotype-specific NS5A inhibitors were used to evaluate a series of genotype 1a/1b hybrid replicons. Our results showed that, consistent with resistance mapping, the inhibitor sensitivity domain also mapped to the N terminus of NS5A, but it could be distinguished from the key resistance sites. In addition, we demonstrated that NS5A inhibitors, as well as an active-site inhibitor that specifically binds NS3 protease, could block the hyperphosphorylation of NS5A, which is believed to play an essential role in the viral life cycle. Clinical proof of concept has recently been achieved with derivatives of these NS5A inhibitors, indicating that small molecules targeting a nontraditional viral protein like NS5A, without any known enzymatic activity, can also have profound antiviral effects on HCV-infected subjects.


2014 ◽  
Vol 59 (3) ◽  
pp. 1505-1511 ◽  
Author(s):  
Warren Kati ◽  
Gennadiy Koev ◽  
Michelle Irvin ◽  
Jill Beyer ◽  
Yaya Liu ◽  
...  

ABSTRACTDasabuvir (ABT-333) is a nonnucleoside inhibitor of the RNA-dependent RNA polymerase encoded by the hepatitis C virus (HCV) NS5B gene. Dasabuvir inhibited recombinant NS5B polymerases derived from HCV genotype 1a and 1b clinical isolates, with 50% inhibitory concentration (IC50) values between 2.2 and 10.7 nM, and was at least 7,000-fold selective for the inhibition of HCV genotype 1 polymerases over human/mammalian polymerases. In the HCV subgenomic replicon system, dasabuvir inhibited genotype 1a (strain H77) and 1b (strain Con1) replicons with 50% effective concentration (EC50) values of 7.7 and 1.8 nM, respectively, with a 13-fold decrease in inhibitory activity in the presence of 40% human plasma. This level of activity was retained against a panel of chimeric subgenomic replicons that contained HCV NS5B genes from 22 genotype 1 clinical isolates from treatment-naive patients, with EC50s ranging between 0.15 and 8.57 nM. Maintenance of replicon-containing cells in medium containing dasabuvir at concentrations 10-fold or 100-fold greater than the EC50resulted in selection of resistant replicon clones. Sequencing of the NS5B coding regions from these clones revealed the presence of variants, including C316Y, M414T, Y448C, Y448H, and S556G, that are consistent with binding to the palm I site of HCV polymerase. Consequently, dasabuvir retained full activity against replicons known to confer resistance to other polymerase inhibitors, including the S282T variant in the nucleoside binding site and the M423T, P495A, P495S, and V499A single variants in the thumb domain. The use of dasabuvir in combination with inhibitors targeting HCV NS3/NS4A protease (ABT-450 with ritonavir) and NS5A (ombitasvir) is in development for the treatment of HCV genotype 1 infections.


Sign in / Sign up

Export Citation Format

Share Document