scholarly journals T30177, an oligonucleotide stabilized by an intramolecular guanosine octet, is a potent inhibitor of laboratory strains and clinical isolates of human immunodeficiency virus type 1

1995 ◽  
Vol 39 (11) ◽  
pp. 2426-2435 ◽  
Author(s):  
J. O. Ojwang ◽  
R. W. Buckheit ◽  
Y. Pommier ◽  
A. Mazumder ◽  
K. De Vreese ◽  
...  
1997 ◽  
Vol 41 (5) ◽  
pp. 965-971 ◽  
Author(s):  
D Lamarre ◽  
G Croteau ◽  
E Wardrop ◽  
L Bourgon ◽  
D Thibeault ◽  
...  

Palinavir is a potent inhibitor of the human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) proteases. Replication of laboratory strains (HIV-1, HIV-2, and simian immunodeficiency virus) and HIV-1 clinical isolates is inhibited by palinavir with 50% effective concentrations ranging from 0.5 to 30 nM. The average cytotoxic concentration of palinavir (35 microM) in the various target cells indicates a favorable therapeutic index. Potent antiviral activity is retained with increased doses of virus and with clinical isolates resistant to zidovudine (AZT), didanosine (ddI), or nevirapine. Combinations of palinavir with either AZT, ddI, or nevirapine demonstrate synergy or additivity in the inhibition of HIV-1 replication. Palinavir retains anti-HIV-1 activity when administered postinfection until times subsequent to the reverse transcription step. In chronically infected CR-10 cells, palinavir blocks Gag precursor polyprotein processing completely, reducing greater than 99% of infectious particle production. The results indicate that the antiviral activity of palinavir is specific to inhibition of the viral protease and occurs at a late stage in the replicative cycle of HIV-1. On the basis of the potent in vitro activity, low-level cytotoxicity, and other data, palinavir was selected for in-depth preclinical evaluation.


2003 ◽  
Vol 47 (4) ◽  
pp. 1324-1333 ◽  
Author(s):  
Richard J. Colonno ◽  
Alexandra Thiry ◽  
Kay Limoli ◽  
Neil Parkin

ABSTRACT To evaluate the cross-resistance profile of the human immunodeficiency virus type 1 protease inhibitor (PI) atazanavir (BMS-232632), a panel of 551 clinical isolates exhibiting a wide array of PI resistance profiles and a variety of genotypic patterns were assayed for susceptibility to atazanavir and six other PIs: amprenavir, indinavir, lopinavir, nelfinavir, ritonavir, and saquinavir. In general, reductions in atazanavir susceptibility in vitro required several amino acid changes and were relatively modest in degree, and susceptibility was retained among isolates resistant to one or two of the currently approved PIs. There was a clear trend toward loss of susceptibility to atazanavir, as isolates exhibited increasing levels of cross-resistance to multiple PIs. Atazanavir appeared to have a distinct resistance profile relative to each of the other six PIs tested based on susceptibility comparisons against this panel of resistant isolates. Analysis of the genotypic profiles of 943 PI-susceptible and -resistant clinical isolates identified a strong correlation between the presence of amino acid changes at specific residues (10I/V/F, 20R/M/I, 24I, 33I/F/V, 36I/L/V, 46I/L, 48V, 54V/L, 63P, 71V/T/I, 73C/S/T/A, 82A/F/S/T, 84V, and 90M) and decreased susceptibility to atazanavir. While no single substitution or combination of substitutions was predictive of atazanavir resistance (change, >3.0-fold), the presence of at least five of these substitutions correlated strongly with loss of atazanavir susceptibility. Mutations associated with reduced susceptibility to each of the other six PIs were also determined.


2011 ◽  
Vol 55 (12) ◽  
pp. 5723-5731 ◽  
Author(s):  
Inge Dierynck ◽  
Herwig Van Marck ◽  
Marcia Van Ginderen ◽  
Tim H. M. Jonckers ◽  
Madhavi N. L. Nalam ◽  
...  

ABSTRACTTMC310911 is a novel human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) structurally closely related to darunavir (DRV) but with improved virological characteristics. TMC310911 has potent activity against wild-type (WT) HIV-1 (median 50% effective concentration [EC50], 14 nM) and a wide spectrum of recombinant HIV-1 clinical isolates, including multiple-PI-resistant strains with decreased susceptibility to currently approved PIs (fold change [FC] in EC50, >10). For a panel of 2,011 recombinant clinical isolates with decreased susceptibility to at least one of the currently approved PIs, the FC in TMC310911 EC50was ≤4 for 82% of isolates and ≤10 for 96% of isolates. The FC in TMC310911 EC50was ≤4 and ≤10 for 72% and 94% of isolates with decreased susceptibility to DRV, respectively.In vitroresistance selection (IVRS) experiments with WT virus and TMC310911 selected for mutations R41G or R41E, but selection of resistant virus required a longer time than IVRS performed with WT virus and DRV. IVRS performed with r13025, a multiple-PI-resistant recombinant clinical isolate, and TMC310911 selected for mutations L10F, I47V, and L90M (FC in TMC310911 EC50= 16). IVRS performed with r13025 in the presence of DRV required less time and resulted in more PI resistance-associated mutations (V32I, I50V, G73S, L76V, and V82I; FC in DRV EC50= 258). The activity against a comprehensive panel of PI-resistant mutants and the limitedin vitroselection of resistant viruses under drug pressure suggest that TMC310911 represents a potential drug candidate for the management of HIV-1 infection for a broad range of patients, including those with multiple PI resistance.


1997 ◽  
Vol 64 (2) ◽  
pp. 137-145 ◽  
Author(s):  
Corinne Liesnard ◽  
Marie-Luce Delforge ◽  
Michel Tchetcheroff ◽  
Viviane De Maertelaer ◽  
Claire-Michele Farber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document