scholarly journals Activities of the human immunodeficiency virus type 1 (HIV-1) protease inhibitor nelfinavir mesylate in combination with reverse transcriptase and protease inhibitors against acute HIV-1 infection in vitro.

1997 ◽  
Vol 41 (10) ◽  
pp. 2159-2164 ◽  
Author(s):  
A K Patick ◽  
T J Boritzki ◽  
L A Bloom

Nelfinavir mesylate (formerly AG1343) is a potent and selective, nonpeptidic inhibitor of human immunodeficiency virus type 1 (HIV-1) protease that was discovered by protein structure-based design methodologies. We evaluated the antiviral and cytotoxic effects of two-drug combinations of nelfinavir with the clinically approved antiretroviral therapeutics zidovudine (ZDV), lamivudine (3TC), dideoxycytidine (ddC; zalcitabine), stavudine (d4T), didanosine (ddI), indinavir, saquinavir, and ritonavir and a three-drug combination of nelfinavir with ZDV and 3TC against an acute HIV-1 strain RF infection of CEM-SS cells in vitro. Quantitative assessment of drug interaction was evaluated by a universal response surface approach (W. R. Greco, G. Bravo, and J. C. Parsons, Pharm. Rev. 47:331-385, 1995) and by the method of M. N. Prichard and C. Shipman (Antiviral Res. 14:181-206, 1990). Both analytical methods yielded similar results and showed that the two-drug combinations of nelfinavir with the reverse transcriptase inhibitors ZDV, 3TC, ddI, d4T, and ddC and the three-drug combination with ZDV and 3TC resulted in additive to statistically significant synergistic interactions. In a similar manner, the combination of nelfinavir with the three protease inhibitors resulted in additive (ritonavir and saquinavir) to slightly antagonistic (indinavir) interactions. In all combinations, minimal cellular cytotoxicity was observed with any drug alone and in combination. These results suggest that administration of combinations of the appropriate doses of nelfinavir with other currently approved antiretroviral therapeutic agents in vivo may result in enhanced antiviral activity with no associated increase in cellular cytotoxicity.

2000 ◽  
Vol 44 (9) ◽  
pp. 2319-2326 ◽  
Author(s):  
Yi-Fei Gong ◽  
Brett S. Robinson ◽  
Ronald E. Rose ◽  
Carol Deminie ◽  
Timothy P. Spicer ◽  
...  

ABSTRACT BMS-232632 is an azapeptide human immunodeficiency virus (HIV) type 1 (HIV-1) protease inhibitor that displays potent anti-HIV-1 activity (50% effective concentration [EC50], 2.6 to 5.3 nM; EC90, 9 to 15 nM). In vitro passage of HIV-1 RF in the presence of inhibitors showed that BMS-232632 selected for resistant variants more slowly than nelfinavir or ritonavir did. Genotypic and phenotypic analysis of three different HIV strains resistant to BMS-232632 indicated that an N88S substitution in the viral protease appeared first during the selection process in two of the three strains. An I84V change appeared to be an important substitution in the third strain used. Mutations were also observed at the protease cleavage sites following drug selection. The evolution to resistance seemed distinct for each of the three strains used, suggesting multiple pathways to resistance and the importance of the viral genetic background. A cross-resistance study involving five other protease inhibitors indicated that BMS-232632-resistant virus remained sensitive to saquinavir, while it showed various levels (0.1- to 71-fold decrease in sensitivity)-of cross-resistance to nelfinavir, indinavir, ritonavir, and amprenavir. In reciprocal experiments, the BMS-232632 susceptibility of HIV-1 variants selected in the presence of each of the other HIV-1 protease inhibitors showed that the nelfinavir-, saquinavir-, and amprenavir-resistant strains of HIV-1 remained sensitive to BMS-232632, while indinavir- and ritonavir-resistant viruses displayed six- to ninefold changes in BMS-232632 sensitivity. Taken together, our data suggest that BMS-232632 may be a valuable protease inhibitor for use in combination therapy.


2002 ◽  
Vol 76 (6) ◽  
pp. 3031-3037 ◽  
Author(s):  
Keisuke Yusa ◽  
Wei Song ◽  
Matthias Bartelmann ◽  
Shinji Harada

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) heterogeneity contributes to the emergence of drug-resistant virus, escape from host defense systems, and/or conversion of the cellular tropism. To establish an in vitro system to address a heterogeneous virus population, we constructed a library of HIV-1 molecular clones containing a set of random combinations of zero to 11 amino acid substitutions associated with resistance to protease inhibitors by the HIV-1 protease. The complexity (2.1 × 105) of the HIV-1 library pNG-PRL was large enough to cover all of the possible combinations of zero to 11 amino acid substitutions (a total of 4,096 substitutions possible). The T-cell line MT-2 was infected with the HIV-1 library, and resistant viruses were selected after treatment by the protease inhibitor ritonavir (0.03 to 0.30 μM). The viruses that contained three to eight amino acid substitutions could be selected within 2 weeks. These results demonstrate that this HIV-1 library could serve as an alternative in vitro system to analyze the emergence of drug resistance and to evaluate the antiviral activity of novel compounds against multidrug-resistant viruses.


2008 ◽  
Vol 52 (7) ◽  
pp. 2435-2441 ◽  
Author(s):  
U. Lek-Uthai ◽  
R. Suwanarusk ◽  
R. Ruengweerayut ◽  
T. S. Skinner-Adams ◽  
F. Nosten ◽  
...  

ABSTRACT Recent studies using laboratory clones have demonstrated that several antiretroviral protease inhibitors (PIs) inhibit the growth of Plasmodium falciparum at concentrations that may be of clinical significance, especially during human immunodeficiency virus type 1 (HIV-1) and malaria coinfection. Using clinical isolates, we now demonstrate the in vitro effectiveness of two HIV-1 aspartic PIs, saquinavir (SQV) and ritonavir (RTV), against P. vivax (n = 30) and P. falciparum (n = 20) from populations subjected to high levels of mefloquine and artesunate pressure on the Thailand-Myanmar border. The median 50% inhibitory concentration values of P. vivax to RTV and SQV were 2,233 nM (range, 732 to 7,738 nM) and 4,230 nM (range, 1,326 to 8,452 nM), respectively, both within the therapeutic concentration range commonly found for patients treated with these PIs. RTV was fourfold more effective at inhibiting P. vivax than it was at inhibiting P. falciparum, compared to a twofold difference in SQV sensitivity. An increased P. falciparum mdr1 copy number was present in 33% (3/9) of isolates and that of P. vivax mdr1 was present in 9% of isolates (2/22), but neither was associated with PI sensitivity. The inter-Plasmodium sp. variations in PI sensitivity indicate key differences between P. vivax and P. falciparum. PI-containing antiretroviral regimens may demonstrate prophylactic activity against both vivax and falciparum malaria in HIV-infected patients who reside in areas where multidrug-resistant P. vivax or P. falciparum is found.


2003 ◽  
Vol 47 (11) ◽  
pp. 3644-3646 ◽  
Author(s):  
Cécile L. Tremblay ◽  
Danielle L. Poulin ◽  
Jennifer L. Hicks ◽  
Subajini Selliah ◽  
Annie Chamberland ◽  
...  

ABSTRACT We evaluated the in vitro anti-human immunodeficiency virus type 1 (HIV-1) interactions between 1- β-d-2,6-diaminopurine dioxolane (DAPD) and enfuvirtide (T-20) against clinical isolates sensitive and resistant to reverse transcriptase and protease inhibitors. Interactions between T-20 and DAPD were synergistic to nearly additive, with combination index values ranging from 0.53 to 1.06 at 95% inhibitory concentrations. These studies suggest that a combination of T-20 and DAPD might be useful in the treatment of antiretroviral drug-experienced patients.


2002 ◽  
Vol 76 (3) ◽  
pp. 1015-1024 ◽  
Author(s):  
Barbara Müller ◽  
Tilo Patschinsky ◽  
Hans-Georg Kräusslich

ABSTRACT The Gag-derived protein p6 of human immunodeficiency virus type 1 (HIV-1) plays a crucial role in the release of virions from the membranes of infected cells. It is presumed that p6 and functionally related proteins from other viruses act as adapters, recruiting cellular factors to the budding site. This interaction is mediated by so-called late domains within the viral proteins. Previous studies had suggested that virus release from the plasma membrane shares elements with the cellular endocytosis machinery. Since protein phosphorylation is known to be a regulatory mechanism in these processes, we have investigated the phosphorylation of HIV-1 structural proteins. Here we show that p6 is the major phosphoprotein of HIV-1 particles. After metabolic labeling of infected cells with [ortho- 32P]phosphate, we found that phosphorylated p6 from infected cells and from virus particles consisted of several forms, suggesting differential phosphorylation at multiple sites. Apparently, phosphorylation occurred shortly before or after the release of p6 from Gag and involved only a minor fraction of the total virion-associated p6 molecules. Phosphoamino acid analysis indicated phosphorylation at Ser and Thr, as well as a trace of Tyr phosphorylation, supporting the conclusion that multiple phosphorylation events do occur. In vitro experiments using purified virus revealed that endogenous or exogenously added p6 was efficiently phosphorylated by virion-associated cellular kinase(s). Inhibition experiments suggested that a cyclin-dependent kinase or a related kinase, most likely ERK2, was involved in p6 phosphorylation by virion-associated enzymes.


2003 ◽  
Vol 77 (1) ◽  
pp. 291-300 ◽  
Author(s):  
L. Musey ◽  
Y. Ding ◽  
J. Cao ◽  
J. Lee ◽  
C. Galloway ◽  
...  

ABSTRACT Induction of adaptive immunity to human immunodeficiency virus type 1 (HIV-1) at the mucosal site of transmission is poorly understood but crucial in devising strategies to control and prevent infection. To gain further understanding of HIV-1-specific T-cell mucosal immunity, we established HIV-1-specific CD8+ cytotoxic T-lymphocyte (CTL) cell lines and clones from the blood, cervix, rectum, and semen of 12 HIV-1-infected individuals and compared their specificities, cytolytic function, and T-cell receptor (TCR) clonotypes. Blood and mucosal CD8+ CTL had common HIV-1 epitope specificities and major histocompatibility complex restriction patterns. Moreover, both systemic and mucosal CTL lysed targets with similar efficiency, primarily through the perforin-dependent pathway in in vitro studies. Sequence analysis of the TCRβ VDJ region revealed in some cases identical HIV-1-specific CTL clones in different compartments in the same HIV-1-infected individual. These results clearly establish that a subset of blood and mucosal HIV-1-specific CTL can have a common origin and can traffic between anatomically distinct compartments. Thus, these effectors can provide immune surveillance at the mucosa, where rapid responses are needed to contain HIV-1 infection.


2013 ◽  
Vol 94 (2) ◽  
pp. 354-359 ◽  
Author(s):  
Esther F. Gijsbers ◽  
Ad C. van Nuenen ◽  
Hanneke Schuitemaker ◽  
Neeltje A. Kootstra

Three men from a proven homosexual human immunodeficiency virus type 1 (HIV-1) transmission cluster showed large variation in their clinical course of infection. To evaluate the effect of evolution of the same viral variant in these three patients, we analysed sequence variation in the capsid protein and determined the impact of the observed variation on viral replication fitness in vitro. Viral gag sequences from all three patients contained a mutation at position 242, T242N or T242S, which have been associated with lower virus replication in vitro. Interestingly, HIV-1 variants from patients with a progressive clinical course of infection developed compensatory mutations within the capsid that restored viral fitness, instead of reversion of the T242S mutation. In HIV-1 variants from patient 1, an HLA-B57+ elite controller, no compensatory mutations emerged during follow-up.


2007 ◽  
Vol 51 (11) ◽  
pp. 4036-4043 ◽  
Author(s):  
Serge Dandache ◽  
Guy Sévigny ◽  
Jocelyn Yelle ◽  
Brent R. Stranix ◽  
Neil Parkin ◽  
...  

ABSTRACT Despite the success of highly active antiretroviral therapy, the current emergence and spread of drug-resistant variants of human immunodeficiency virus (HIV) stress the need for new inhibitors with distinct properties. We designed, produced, and screened a library of compounds based on an original l-lysine scaffold for their potentials as HIV type 1 (HIV-1) protease inhibitors (PI). One candidate compound, PL-100, emerged as a specific and noncytotoxic PI that exhibited potent inhibition of HIV-1 protease and viral replication in vitro (Ki , ∼36 pM, and 50% effective concentration [EC50], ∼16 nM, respectively). To confirm that PL-100 possessed a favorable resistance profile, we performed a cross-resistance study using a panel of 63 viral strains from PI-experienced patients selected for the presence of primary PI mutations known to confer resistance to multiple PIs now in clinical use. The results showed that PL-100 retained excellent antiviral activity against almost all of these PI-resistant viruses and that its performance in this regard was superior to those of atazanavir, amprenavir, indinavir, lopinavir, nelfinavir, and saquinavir. In almost every case, the increase in the EC50 for PL-100 observed with viruses containing multiple mutations in protease was far less than that obtained with the other drugs tested. These data underscore the potential for PL-100 to be used in the treatment of drug-resistant HIV disease and argue for its further development.


Sign in / Sign up

Export Citation Format

Share Document