scholarly journals Line probe assay for rapid detection of drug-selected mutations in the human immunodeficiency virus type 1 reverse transcriptase gene.

1997 ◽  
Vol 41 (2) ◽  
pp. 284-291 ◽  
Author(s):  
L Stuyver ◽  
A Wyseur ◽  
A Rombout ◽  
J Louwagie ◽  
T Scarcez ◽  
...  

Upon prolonged treatment with various antiretroviral nucleoside analogs such as 3'-azido-3'-deoxythymidine, 2',3'-dideoxyinosine, 2',3'-dideoxycytidine, (-)- beta-L-2', 3'dideoxy-3'thiacytidine and 2',3'-didehydro-3'-deoxythymidine, selection of human immunodeficiency virus type 1 (HIV-1) strains with mutations in the reverse transcriptase (RT) gene has been reported. We designed a reverse hybridization line probe assay (LiPA) for the rapid and simultaneous characterization of the following variations in the RT gene: M41 or L41; T69, N69, A69, or D69; K70 or R70; L74 or V74; V75 or T75; M184, I184, or V184; T215, Y215, or F215; and K219, Q219, or E219. Nucleotide polymorphisms for codon L41 (TTG or CTG), T69 (ACT or ACA), V75 (GTA or GTG), T215 (ACC or ACT), and Y215 (TAC or TAT) could be detected. In addition to the codons mentioned above, several third-letter polymorphisms in the direct vicinity of the target codons (E40, E42, K43, K73, D76, Q182, Y183, D185, G213, F214, and L214) were found, and specific probes were selected. In total, 48 probes were designed and applied to the LiPA test strips and optimized with a well-characterized and representative reference panel. Plasma samples from 358 HIV-infected patients were analyzed with all 48 probes. The amino acid profiles could be deduced by LiPA hybridization in an average of 92.7% of the samples for each individual codon. When combined with changes in viral load and CD4+ T-cell count, this LiPA approach proved to be useful in studying genetic resistance in follow-up samples from antiretroviral agent-treated HIV-1-infected individuals.

1999 ◽  
Vol 43 (7) ◽  
pp. 1674-1680 ◽  
Author(s):  
Rodrigo Brindeiro ◽  
Bart Vanderborght ◽  
Elena Caride ◽  
Letícia Correa ◽  
Rejane M. Oravec ◽  
...  

ABSTRACT The presence of human immunodeficiency virus type 1 (HIV-1) bearing mutations resistant to nucleosidic inhibitors of the viral reverse transcriptase (RT) derived from HIV-seropositive asymptomatic and untreated volunteer blood donors was examined. The RT amplicons of 32 specimens were analyzed by using a reverse hybridization line probe assay technique that detects resistance against zidovudine (3′-azido-3′-deoxythymidine [AZT], didanosine (2′,3′-dideoxyinosine [ddI], zalcitabine (2′,3′-dideoxycytidine [ddC]), and lamivudine {(−)-β-l-2′,3′-dideoxy-3′-thiacytidine [3TC]} at amino acid positions 41, 69, 70, 74, 184, and 215 of the HIV RT. One sample (brp004, subtype B) showed an AZT resistance secondary mutation at position K70R. Fifteen specimens revealed one or more sites of nonreactivity to both wild-type- and mutant-specific probes (dual nonreactivity). Samples were also submitted to RT direct sequencing and phylogenetic analysis. Nine of 32 specimens belonged to non-B subtypes (C, D, F, and F/B or B/F mosaics). Three of these non-B isolates, named brp004, brp063, and brp069, revealed three other relevant AZT resistance mutations—a T215F mutation and two M41L mutations, respectively—hidden by the nonreactivity to line probe assay strips on the respective codon regions. The isolate brp004 also carried a D67N AZT resistance mutation revealed by direct sequencing. No nonnucleosidic RT inhibitor-resistant mutation was found. The analysis revealed a frequency of 2.26 × 10−4 mutations per nucleotide for independent samples related to RT resistance. These findings emphasize the magnitude of naturally occurring reservoirs of drug-resistant virus among untreated HIV-1-positive individuals in Brazil.


2005 ◽  
Vol 49 (8) ◽  
pp. 3334-3340 ◽  
Author(s):  
Michael J. Moser ◽  
Meta Ruckstuhl ◽  
Christine A. Larsen ◽  
Amanda J. Swearingen ◽  
Miroslaw Kozlowski ◽  
...  

ABSTRACT In order to survive prolonged treatment with antiretroviral nucleoside analogs, the human immunodeficiency virus type 1 (HIV-1) is selectively forced to acquire mutations in the reverse transcriptase (RT) gene. Some of these mutations are more common than others and have become markers for antiretroviral resistance. For the early detection of these markers, a novel MultiCode-RTx one-step testing system to rapidly and simultaneously characterize mixtures of HIV-1 targets was designed. For cDNA, nucleotide polymorphisms for codon M184V (ATG to GTG) and K65R (AAA to AGA) could be differentiated and quantified even when the population mixture varied as much as 1 to 10,000. Standard mixed-population curves using 1 to 100% of the mutant or wild type generated over 4 logs of total viral particle input did not affect the overall curves, making the method robust. The system was also applied to a small set of samples extracted from infected individuals on nucleoside reverse transcriptase inhibitor therapy. Of 13 samples tested, all were positive for HIV and 10 of the 13 genotypes determined were concordant with the line probe assay. MultiCode-RTx could be applied to other drug-selected mutations in the viral genome or for applications where single-base changes in DNA or RNA occur at frequencies reaching 0.01% to 1%, respectively.


2006 ◽  
Vol 50 (8) ◽  
pp. 2772-2781 ◽  
Author(s):  
Zhijun Zhang ◽  
Michelle Walker ◽  
Wen Xu ◽  
Jae Hoon Shim ◽  
Jean-Luc Girardet ◽  
...  

ABSTRACT Mutations in and around the catalytic site of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) are associated with resistance to nucleoside RT inhibitors (NRTIs), whereas changes in the hydrophobic pocket of the RT are attributed to nonnucleoside RT inhibitor (NNRTI) resistance. In this study, we report a novel series of nonnucleoside inhibitors of HIV-1, exemplified by VRX-329747 and VRX-413638, which inhibit both NNRTI- and NRTI-resistant HIV-1 isolates. Enzymatic studies indicated that these compounds are HIV-1 RT inhibitors. Surprisingly, however, following prolonged (6 months) tissue culture selection, this series of nonnucleoside inhibitors did not select NNRTI-resistant mutations in HIV-1 RT. Rather, four mutations (M41L, A62T/V, V118I, and M184V) known to cause resistance to NRTIs and two additional novel mutations (S68N and G112S) adjacent to the catalytic site of the enzyme were selected. Although the M184V mutation appears to be the initial mutation to establish resistance, this mutation alone confers only a two- to fourfold decrease in susceptibility to VRX-329747 and VRX-413638. At least two additional mutations must accumulate for significant resistance. Moreover, while VRX-329747-selected viruses are resistant to lamivudine and emtricitabine due to the M184V mutation, they remain susceptible to zidovudine, stavudine, dideoxyinosine, abacavir, tenofovir, and efavirenz. These results directly demonstrate that VRX-329747 and VRX-413638 are novel nonnucleoside inhibitors of HIV-1 RT with the potential to augment current therapies.


1999 ◽  
Vol 43 (2) ◽  
pp. 259-263 ◽  
Author(s):  
Gadi Borkow ◽  
Dominique Arion ◽  
Mark A. Wainberg ◽  
Michael A. Parniak

ABSTRACT N-[4-Chloro-3-(3-methyl-2-butenyloxy)phenyl]-2-methyl-3-furancarbothioamide (UC781) is an exceptionally potent nonnucleoside inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. We found that a 1:1 molar combination of UC781 and 3′-azido-3′-deoxythymidine (AZT) showed high-level synergy in inhibiting the replication of AZT-resistant virus, implying that UC781 can restore antiviral activity to AZT against AZT-resistant HIV-1. Neither the nevirapine plus AZT nor the 2′,5′-bis-O-(t-butyldimethylsilyl)-3′-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide plus AZT combinations had this effect. Studies with purified HIV-1 reverse transcriptase (from a wild type and an AZT-resistant mutant) showed that UC781 was a potent inhibitor of the pyrophosphorolytic cleavage of nucleotides from the 3′ end of the DNA polymerization primer, a process that we have proposed to be critical for the phenotypic expression of AZT resistance. Combinations of UC781 plus AZT did not act in synergy to inhibit the replication of either wild-type virus or UC781-resistant HIV-1. Importantly, the time to the development of viral resistance to combinations of UC781 plus AZT is significantly delayed compared to the time to the development of resistance to either drug alone.


1998 ◽  
Vol 9 (5) ◽  
pp. 412-421 ◽  
Author(s):  
C Chamorro ◽  
M-J Camarasa ◽  
M-J Pérez-Pérez ◽  
E de Clercq ◽  
J Balzarini ◽  
...  

Novel derivatives of the potent human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) inhibitor TSAO-T have been designed, synthesized and tested for their in vitro antiretro-viral activity against HIV. These TSAO-T derivatives have been designed as potential bidentate inhibitors of HIV-1 RT, which combine in their structure the functionality of a non-nucleoside RT inhibitor (TSAO-T) and a bivalent ion-chelating moiety (a β-diketone moiety) linked through an appropriate spacer to the N-3 of thymine of TSAO-T . Some of the new compounds have an anti-HIV-1 activity comparable to that of the parent compound TSAO-T, but display a markedly increased antiviral selectivity. There was a clear relationship between antiviral activity and the length of the spacer group that links the TSAO molecule with the chelating moiety. A shorter spacer invariably resulted in increased antiviral potency. None of the TSAO-T derivatives were endowed with anti-HIV-2 activity.


2002 ◽  
Vol 76 (7) ◽  
pp. 3248-3256 ◽  
Author(s):  
Paul L. Boyer ◽  
Stefan G. Sarafianos ◽  
Edward Arnold ◽  
Stephen H. Hughes

ABSTRACT The M184V mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) causes resistance to lamivudine, but it also increases the sensitivity of the virus to zidovudine (3′-azido-3′-deoxythymidine; AZT). This sensitization to AZT is seen both in the presence and the absence of the mutations that confer resistance to AZT. AZT resistance is due to enhanced excision of AZT 5′-monophosphate (AZTMP) from the end of the primer by the RT of the resistant virus. Published data suggest that the excision reaction involves pyrophosphorolysis but that the likely in vivo pyrophosphate donor is not pyrophosphate but ATP. The mutations that lead to AZT resistance enhance ATP binding and, in so doing, enhance pyrophosphorolysis. The excision reaction is specific for AZT because HIV-1 RT, which can form a closed complex with a dideoxy-terminated primer and an incoming deoxynucleoside triphosphate (dNTP), does not form the closed complex with an AZTMP-terminated primer and an incoming dNTP. This means that an AZTMP-terminated primer has better access to the site where it can be excised. The M184V mutation alters the polymerase active site in a fashion that specifically interferes with ATP-mediated excision of AZTMP from the end of the primer strand. The M184V mutation does not affect the incorporation of AZT 5′-triphosphate (AZTTP), either in the presence or the absence of mutations that enhance AZTMP excision. However, in the presence of ATP, the M184V mutation does decrease the ability of HIV-1 RT to carry out AZTMP excision. Based on these results, and on the results of other excision experiments, we present a model to explain how the M184V mutation affects AZTMP excision.


2005 ◽  
Vol 49 (11) ◽  
pp. 4546-4554 ◽  
Author(s):  
Reynel Cancio ◽  
Romano Silvestri ◽  
Rino Ragno ◽  
Marino Artico ◽  
Gabriella De Martino ◽  
...  

ABSTRACT Indolyl aryl sulfone (IAS) nonnucleoside inhibitors have been shown to potently inhibit the growth of wild-type and drug-resistant human immunodeficiency virus type 1 (HIV-1), but their exact mechanism of action has not been elucidated yet. Here, we describe the mechanism of inhibition of HIV-1 reverse transcriptase (RT) by selected IAS derivatives. Our results showed that, depending on the substitutions introduced in the IAS common pharmacophore, these compounds can be made selective for different enzyme-substrate complexes. Moreover, we showed that the molecular basis for this selectivity was a different association rate of the drug to a particular enzymatic form along the reaction pathway. By comparing the activities of the different compounds against wild-type RT and the nonnucleoside reverse transcriptase inhibitor-resistant mutant Lys103Asn, it was possible to hypothesize, on the basis of their mechanism of action, a rationale for the design of drugs which could overcome the steric barrier imposed by the Lys103Asn mutation.


2005 ◽  
Vol 49 (5) ◽  
pp. 1761-1769 ◽  
Author(s):  
Anthony J. Smith ◽  
Peter R. Meyer ◽  
Deshratn Asthana ◽  
Margarita R. Ashman ◽  
Walter A. Scott

ABSTRACT Treatment of human immunodeficiency virus type 1 (HIV-1)-infected patients with 3′-azido-3′-deoxythymidine (AZT) selects for mutant forms of viral reverse transcriptase (RT) with increased ability to remove chain-terminating nucleotides from blocked DNA chains. We tested various cell extracts for the presence of endogenous acceptor substrates for this reaction. Cell extracts incubated with HIV-1 RT and [32P]ddAMP-terminated DNA primer/template gave rise to 32P-labeled adenosine 2′,3′-dideoxyadenosine 5′,5′′′−P1,P4-tetraphosphate (Ap4ddA), ddATP, Gp4ddA, and Ap3ddA, corresponding to the transfer of [32P]ddAMP to ATP, PPi, GTP, and ADP, respectively. Incubation with [32P]AZT monophosphate (AZTMP)-terminated primer/template gave rise to the analogous 32P-labeled AZT derivatives. Based on the rates of formation of the specific excision products, ATP and PPi levels were determined: ATP was present at 1.3 to 2.2 mM in H9 cells, macrophages, and unstimulated CD4+ or CD8+ T cells, while PPi was present at 7 to 15 μM. Under these conditions, the ATP-dependent reaction predominated, and excision by the AZT-resistant mutant RT was more efficient than wild type RT. Activated CD4+ or CD8+ T cells contained 1.4 to 2.7 mM ATP and 55 to 79 μM PPi. These cellular PPi concentrations are lower than previously reported; nonetheless, the PPi-dependent reaction predominated in extracts from activated T cells, and excision by mutant and wild-type RT occurred with similar efficiency. While PPi-dependent excision may contribute to AZT resistance in vivo, it is likely that selection of AZT-resistant mutants occurs primarily in an environment where the ATP-dependent reaction predominates.


2009 ◽  
Vol 53 (11) ◽  
pp. 4667-4672 ◽  
Author(s):  
Hongtao Xu ◽  
Yudong Quan ◽  
Bluma G. Brenner ◽  
Tamara Bar-Magen ◽  
Maureen Oliveira ◽  
...  

ABSTRACT Etravirine (ETR) is a second-generation nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) active against common human immunodeficiency virus type 1 (HIV-1) drug-resistant strains. This study was designed to determine the extent to which each of the Y181C or G190A mutations in RT might confer resistance to ETR and other members of the NNRTI family of drugs. Recombinant HIV-1 RT enzymes containing either the Y181C or the G190A mutation, or both mutations in tandem, were purified. Both RNA- and DNA-dependent DNA polymerase assays were performed in order to determine the extent to which each of these mutations might confer resistance in cell-free biochemical assays against each of ETR, efavirenz, and nevirapine. Both the biochemical and the cell-based phenotypic assays confirmed the susceptibility of G190A-containing enzymes and viruses to ETR. The results of this study indicate that the G190A mutation is not associated with resistance to ETR.


Sign in / Sign up

Export Citation Format

Share Document